Metamath Proof Explorer


Theorem blennn0elnn

Description: The binary length of a nonnegative integer is a positive integer. (Contributed by AV, 28-May-2020)

Ref Expression
Assertion blennn0elnn N 0 # b N

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 blennnelnn N # b N
3 fveq2 N = 0 # b N = # b 0
4 blen0 # b 0 = 1
5 1nn 1
6 4 5 eqeltri # b 0
7 3 6 eqeltrdi N = 0 # b N
8 2 7 jaoi N N = 0 # b N
9 1 8 sylbi N 0 # b N