Metamath Proof Explorer


Theorem blennn0elnn

Description: The binary length of a nonnegative integer is a positive integer. (Contributed by AV, 28-May-2020)

Ref Expression
Assertion blennn0elnn N0#b N

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 blennnelnn N#b N
3 fveq2 N=0#b N = #b 0
4 blen0 #b 0 = 1
5 1nn 1
6 4 5 eqeltri #b 0
7 3 6 eqeltrdi N=0#b N
8 2 7 jaoi NN=0#b N
9 1 8 sylbi N0#b N