| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blennn0elnn |  |-  ( A e. NN0 -> ( #b ` A ) e. NN ) | 
						
							| 2 |  | nn0sumshdiglem2 |  |-  ( ( #b ` A ) e. NN -> A. a e. NN0 ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) | 
						
							| 3 |  | eqid |  |-  ( #b ` A ) = ( #b ` A ) | 
						
							| 4 |  | fveqeq2 |  |-  ( a = A -> ( ( #b ` a ) = ( #b ` A ) <-> ( #b ` A ) = ( #b ` A ) ) ) | 
						
							| 5 |  | id |  |-  ( a = A -> a = A ) | 
						
							| 6 |  | oveq2 |  |-  ( a = A -> ( k ( digit ` 2 ) a ) = ( k ( digit ` 2 ) A ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( a = A -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( a = A /\ k e. ( 0 ..^ ( #b ` A ) ) ) -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) | 
						
							| 9 | 8 | sumeq2dv |  |-  ( a = A -> sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) | 
						
							| 10 | 5 9 | eqeq12d |  |-  ( a = A -> ( a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) <-> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) | 
						
							| 11 | 4 10 | imbi12d |  |-  ( a = A -> ( ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> ( ( #b ` A ) = ( #b ` A ) -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) ) | 
						
							| 12 | 11 | rspcva |  |-  ( ( A e. NN0 /\ A. a e. NN0 ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) -> ( ( #b ` A ) = ( #b ` A ) -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) | 
						
							| 13 | 3 12 | mpi |  |-  ( ( A e. NN0 /\ A. a e. NN0 ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) | 
						
							| 14 | 13 | ex |  |-  ( A e. NN0 -> ( A. a e. NN0 ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) | 
						
							| 15 | 2 14 | syl5 |  |-  ( A e. NN0 -> ( ( #b ` A ) e. NN -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) | 
						
							| 16 | 1 15 | mpd |  |-  ( A e. NN0 -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) |