Step |
Hyp |
Ref |
Expression |
1 |
|
blennn0elnn |
|- ( A e. NN0 -> ( #b ` A ) e. NN ) |
2 |
|
nn0sumshdiglem2 |
|- ( ( #b ` A ) e. NN -> A. a e. NN0 ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
3 |
|
eqid |
|- ( #b ` A ) = ( #b ` A ) |
4 |
|
fveqeq2 |
|- ( a = A -> ( ( #b ` a ) = ( #b ` A ) <-> ( #b ` A ) = ( #b ` A ) ) ) |
5 |
|
id |
|- ( a = A -> a = A ) |
6 |
|
oveq2 |
|- ( a = A -> ( k ( digit ` 2 ) a ) = ( k ( digit ` 2 ) A ) ) |
7 |
6
|
oveq1d |
|- ( a = A -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) |
8 |
7
|
adantr |
|- ( ( a = A /\ k e. ( 0 ..^ ( #b ` A ) ) ) -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) |
9 |
8
|
sumeq2dv |
|- ( a = A -> sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) |
10 |
5 9
|
eqeq12d |
|- ( a = A -> ( a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) <-> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) |
11 |
4 10
|
imbi12d |
|- ( a = A -> ( ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> ( ( #b ` A ) = ( #b ` A ) -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) ) |
12 |
11
|
rspcva |
|- ( ( A e. NN0 /\ A. a e. NN0 ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) -> ( ( #b ` A ) = ( #b ` A ) -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) |
13 |
3 12
|
mpi |
|- ( ( A e. NN0 /\ A. a e. NN0 ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) |
14 |
13
|
ex |
|- ( A e. NN0 -> ( A. a e. NN0 ( ( #b ` a ) = ( #b ` A ) -> a = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) |
15 |
2 14
|
syl5 |
|- ( A e. NN0 -> ( ( #b ` A ) e. NN -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) ) |
16 |
1 15
|
mpd |
|- ( A e. NN0 -> A = sum_ k e. ( 0 ..^ ( #b ` A ) ) ( ( k ( digit ` 2 ) A ) x. ( 2 ^ k ) ) ) |