Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
|- ( x = 1 -> ( ( #b ` a ) = x <-> ( #b ` a ) = 1 ) ) |
2 |
|
oveq2 |
|- ( x = 1 -> ( 0 ..^ x ) = ( 0 ..^ 1 ) ) |
3 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
4 |
2 3
|
eqtrdi |
|- ( x = 1 -> ( 0 ..^ x ) = { 0 } ) |
5 |
4
|
sumeq1d |
|- ( x = 1 -> sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
6 |
5
|
eqeq2d |
|- ( x = 1 -> ( a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) <-> a = sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
7 |
1 6
|
imbi12d |
|- ( x = 1 -> ( ( ( #b ` a ) = x -> a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> ( ( #b ` a ) = 1 -> a = sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
8 |
7
|
ralbidv |
|- ( x = 1 -> ( A. a e. NN0 ( ( #b ` a ) = x -> a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> A. a e. NN0 ( ( #b ` a ) = 1 -> a = sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
9 |
|
eqeq2 |
|- ( x = y -> ( ( #b ` a ) = x <-> ( #b ` a ) = y ) ) |
10 |
|
oveq2 |
|- ( x = y -> ( 0 ..^ x ) = ( 0 ..^ y ) ) |
11 |
10
|
sumeq1d |
|- ( x = y -> sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
12 |
11
|
eqeq2d |
|- ( x = y -> ( a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) <-> a = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
13 |
9 12
|
imbi12d |
|- ( x = y -> ( ( ( #b ` a ) = x -> a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> ( ( #b ` a ) = y -> a = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
14 |
13
|
ralbidv |
|- ( x = y -> ( A. a e. NN0 ( ( #b ` a ) = x -> a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> A. a e. NN0 ( ( #b ` a ) = y -> a = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
15 |
|
eqeq2 |
|- ( x = ( y + 1 ) -> ( ( #b ` a ) = x <-> ( #b ` a ) = ( y + 1 ) ) ) |
16 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( 0 ..^ x ) = ( 0 ..^ ( y + 1 ) ) ) |
17 |
16
|
sumeq1d |
|- ( x = ( y + 1 ) -> sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
18 |
17
|
eqeq2d |
|- ( x = ( y + 1 ) -> ( a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) <-> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
19 |
15 18
|
imbi12d |
|- ( x = ( y + 1 ) -> ( ( ( #b ` a ) = x -> a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
20 |
19
|
ralbidv |
|- ( x = ( y + 1 ) -> ( A. a e. NN0 ( ( #b ` a ) = x -> a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> A. a e. NN0 ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
21 |
|
eqeq2 |
|- ( x = L -> ( ( #b ` a ) = x <-> ( #b ` a ) = L ) ) |
22 |
|
oveq2 |
|- ( x = L -> ( 0 ..^ x ) = ( 0 ..^ L ) ) |
23 |
22
|
sumeq1d |
|- ( x = L -> sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. ( 0 ..^ L ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
24 |
23
|
eqeq2d |
|- ( x = L -> ( a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) <-> a = sum_ k e. ( 0 ..^ L ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
25 |
21 24
|
imbi12d |
|- ( x = L -> ( ( ( #b ` a ) = x -> a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> ( ( #b ` a ) = L -> a = sum_ k e. ( 0 ..^ L ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
26 |
25
|
ralbidv |
|- ( x = L -> ( A. a e. NN0 ( ( #b ` a ) = x -> a = sum_ k e. ( 0 ..^ x ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) <-> A. a e. NN0 ( ( #b ` a ) = L -> a = sum_ k e. ( 0 ..^ L ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
27 |
|
0cnd |
|- ( a e. NN0 -> 0 e. CC ) |
28 |
|
2nn |
|- 2 e. NN |
29 |
28
|
a1i |
|- ( a e. NN0 -> 2 e. NN ) |
30 |
|
0zd |
|- ( a e. NN0 -> 0 e. ZZ ) |
31 |
|
nn0rp0 |
|- ( a e. NN0 -> a e. ( 0 [,) +oo ) ) |
32 |
|
digvalnn0 |
|- ( ( 2 e. NN /\ 0 e. ZZ /\ a e. ( 0 [,) +oo ) ) -> ( 0 ( digit ` 2 ) a ) e. NN0 ) |
33 |
29 30 31 32
|
syl3anc |
|- ( a e. NN0 -> ( 0 ( digit ` 2 ) a ) e. NN0 ) |
34 |
33
|
nn0cnd |
|- ( a e. NN0 -> ( 0 ( digit ` 2 ) a ) e. CC ) |
35 |
|
1cnd |
|- ( a e. NN0 -> 1 e. CC ) |
36 |
34 35
|
mulcld |
|- ( a e. NN0 -> ( ( 0 ( digit ` 2 ) a ) x. 1 ) e. CC ) |
37 |
27 36
|
jca |
|- ( a e. NN0 -> ( 0 e. CC /\ ( ( 0 ( digit ` 2 ) a ) x. 1 ) e. CC ) ) |
38 |
37
|
adantr |
|- ( ( a e. NN0 /\ ( #b ` a ) = 1 ) -> ( 0 e. CC /\ ( ( 0 ( digit ` 2 ) a ) x. 1 ) e. CC ) ) |
39 |
|
oveq1 |
|- ( k = 0 -> ( k ( digit ` 2 ) a ) = ( 0 ( digit ` 2 ) a ) ) |
40 |
|
oveq2 |
|- ( k = 0 -> ( 2 ^ k ) = ( 2 ^ 0 ) ) |
41 |
|
2cn |
|- 2 e. CC |
42 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
43 |
41 42
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
44 |
40 43
|
eqtrdi |
|- ( k = 0 -> ( 2 ^ k ) = 1 ) |
45 |
39 44
|
oveq12d |
|- ( k = 0 -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( 0 ( digit ` 2 ) a ) x. 1 ) ) |
46 |
45
|
sumsn |
|- ( ( 0 e. CC /\ ( ( 0 ( digit ` 2 ) a ) x. 1 ) e. CC ) -> sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( 0 ( digit ` 2 ) a ) x. 1 ) ) |
47 |
38 46
|
syl |
|- ( ( a e. NN0 /\ ( #b ` a ) = 1 ) -> sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( 0 ( digit ` 2 ) a ) x. 1 ) ) |
48 |
34
|
adantr |
|- ( ( a e. NN0 /\ ( #b ` a ) = 1 ) -> ( 0 ( digit ` 2 ) a ) e. CC ) |
49 |
48
|
mulid1d |
|- ( ( a e. NN0 /\ ( #b ` a ) = 1 ) -> ( ( 0 ( digit ` 2 ) a ) x. 1 ) = ( 0 ( digit ` 2 ) a ) ) |
50 |
|
blen1b |
|- ( a e. NN0 -> ( ( #b ` a ) = 1 <-> ( a = 0 \/ a = 1 ) ) ) |
51 |
50
|
biimpa |
|- ( ( a e. NN0 /\ ( #b ` a ) = 1 ) -> ( a = 0 \/ a = 1 ) ) |
52 |
|
vex |
|- a e. _V |
53 |
52
|
elpr |
|- ( a e. { 0 , 1 } <-> ( a = 0 \/ a = 1 ) ) |
54 |
51 53
|
sylibr |
|- ( ( a e. NN0 /\ ( #b ` a ) = 1 ) -> a e. { 0 , 1 } ) |
55 |
|
0dig2pr01 |
|- ( a e. { 0 , 1 } -> ( 0 ( digit ` 2 ) a ) = a ) |
56 |
54 55
|
syl |
|- ( ( a e. NN0 /\ ( #b ` a ) = 1 ) -> ( 0 ( digit ` 2 ) a ) = a ) |
57 |
47 49 56
|
3eqtrrd |
|- ( ( a e. NN0 /\ ( #b ` a ) = 1 ) -> a = sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
58 |
57
|
ex |
|- ( a e. NN0 -> ( ( #b ` a ) = 1 -> a = sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
59 |
58
|
rgen |
|- A. a e. NN0 ( ( #b ` a ) = 1 -> a = sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
60 |
|
nn0sumshdiglem1 |
|- ( y e. NN -> ( A. a e. NN0 ( ( #b ` a ) = y -> a = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) -> A. a e. NN0 ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
61 |
8 14 20 26 59 60
|
nnind |
|- ( L e. NN -> A. a e. NN0 ( ( #b ` a ) = L -> a = sum_ k e. ( 0 ..^ L ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |