Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
blennn |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
3 |
2
|
eqeq1d |
|- ( N e. NN -> ( ( #b ` N ) = 1 <-> ( ( |_ ` ( 2 logb N ) ) + 1 ) = 1 ) ) |
4 |
|
2rp |
|- 2 e. RR+ |
5 |
4
|
a1i |
|- ( N e. NN -> 2 e. RR+ ) |
6 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
7 |
|
1ne2 |
|- 1 =/= 2 |
8 |
7
|
necomi |
|- 2 =/= 1 |
9 |
8
|
a1i |
|- ( N e. NN -> 2 =/= 1 ) |
10 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ N e. RR+ /\ 2 =/= 1 ) -> ( 2 logb N ) e. RR ) |
11 |
5 6 9 10
|
syl3anc |
|- ( N e. NN -> ( 2 logb N ) e. RR ) |
12 |
11
|
flcld |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. ZZ ) |
13 |
12
|
zcnd |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. CC ) |
14 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
15 |
13 14 14
|
addlsub |
|- ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) = 1 <-> ( |_ ` ( 2 logb N ) ) = ( 1 - 1 ) ) ) |
16 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
17 |
16
|
a1i |
|- ( N e. NN -> ( 1 - 1 ) = 0 ) |
18 |
17
|
eqeq2d |
|- ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) = ( 1 - 1 ) <-> ( |_ ` ( 2 logb N ) ) = 0 ) ) |
19 |
|
0z |
|- 0 e. ZZ |
20 |
|
flbi |
|- ( ( ( 2 logb N ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( 2 logb N ) ) = 0 <-> ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < ( 0 + 1 ) ) ) ) |
21 |
11 19 20
|
sylancl |
|- ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) = 0 <-> ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < ( 0 + 1 ) ) ) ) |
22 |
15 18 21
|
3bitrd |
|- ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) = 1 <-> ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < ( 0 + 1 ) ) ) ) |
23 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
24 |
23
|
breq2i |
|- ( ( 2 logb N ) < ( 0 + 1 ) <-> ( 2 logb N ) < 1 ) |
25 |
24
|
anbi2i |
|- ( ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < ( 0 + 1 ) ) <-> ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) ) |
26 |
|
nnlog2ge0lt1 |
|- ( N e. NN -> ( N = 1 <-> ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) ) ) |
27 |
26
|
biimpar |
|- ( ( N e. NN /\ ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) ) -> N = 1 ) |
28 |
27
|
olcd |
|- ( ( N e. NN /\ ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) ) -> ( N = 0 \/ N = 1 ) ) |
29 |
28
|
ex |
|- ( N e. NN -> ( ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) -> ( N = 0 \/ N = 1 ) ) ) |
30 |
25 29
|
syl5bi |
|- ( N e. NN -> ( ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < ( 0 + 1 ) ) -> ( N = 0 \/ N = 1 ) ) ) |
31 |
22 30
|
sylbid |
|- ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) = 1 -> ( N = 0 \/ N = 1 ) ) ) |
32 |
3 31
|
sylbid |
|- ( N e. NN -> ( ( #b ` N ) = 1 -> ( N = 0 \/ N = 1 ) ) ) |
33 |
|
orc |
|- ( N = 0 -> ( N = 0 \/ N = 1 ) ) |
34 |
33
|
a1d |
|- ( N = 0 -> ( ( #b ` N ) = 1 -> ( N = 0 \/ N = 1 ) ) ) |
35 |
32 34
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( ( #b ` N ) = 1 -> ( N = 0 \/ N = 1 ) ) ) |
36 |
1 35
|
sylbi |
|- ( N e. NN0 -> ( ( #b ` N ) = 1 -> ( N = 0 \/ N = 1 ) ) ) |
37 |
|
fveq2 |
|- ( N = 0 -> ( #b ` N ) = ( #b ` 0 ) ) |
38 |
|
blen0 |
|- ( #b ` 0 ) = 1 |
39 |
37 38
|
eqtrdi |
|- ( N = 0 -> ( #b ` N ) = 1 ) |
40 |
|
fveq2 |
|- ( N = 1 -> ( #b ` N ) = ( #b ` 1 ) ) |
41 |
|
blen1 |
|- ( #b ` 1 ) = 1 |
42 |
40 41
|
eqtrdi |
|- ( N = 1 -> ( #b ` N ) = 1 ) |
43 |
39 42
|
jaoi |
|- ( ( N = 0 \/ N = 1 ) -> ( #b ` N ) = 1 ) |
44 |
36 43
|
impbid1 |
|- ( N e. NN0 -> ( ( #b ` N ) = 1 <-> ( N = 0 \/ N = 1 ) ) ) |