Step |
Hyp |
Ref |
Expression |
1 |
|
0le0 |
|- 0 <_ 0 |
2 |
|
2cn |
|- 2 e. CC |
3 |
|
2ne0 |
|- 2 =/= 0 |
4 |
|
1ne2 |
|- 1 =/= 2 |
5 |
4
|
necomi |
|- 2 =/= 1 |
6 |
|
logb1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) |
7 |
2 3 5 6
|
mp3an |
|- ( 2 logb 1 ) = 0 |
8 |
1 7
|
breqtrri |
|- 0 <_ ( 2 logb 1 ) |
9 |
|
0lt1 |
|- 0 < 1 |
10 |
7 9
|
eqbrtri |
|- ( 2 logb 1 ) < 1 |
11 |
8 10
|
pm3.2i |
|- ( 0 <_ ( 2 logb 1 ) /\ ( 2 logb 1 ) < 1 ) |
12 |
|
oveq2 |
|- ( N = 1 -> ( 2 logb N ) = ( 2 logb 1 ) ) |
13 |
12
|
breq2d |
|- ( N = 1 -> ( 0 <_ ( 2 logb N ) <-> 0 <_ ( 2 logb 1 ) ) ) |
14 |
12
|
breq1d |
|- ( N = 1 -> ( ( 2 logb N ) < 1 <-> ( 2 logb 1 ) < 1 ) ) |
15 |
13 14
|
anbi12d |
|- ( N = 1 -> ( ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) <-> ( 0 <_ ( 2 logb 1 ) /\ ( 2 logb 1 ) < 1 ) ) ) |
16 |
11 15
|
mpbiri |
|- ( N = 1 -> ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) ) |
17 |
|
2z |
|- 2 e. ZZ |
18 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
19 |
17 18
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
20 |
19
|
a1i |
|- ( N e. NN -> 2 e. ( ZZ>= ` 2 ) ) |
21 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
22 |
|
logbge0b |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ N e. RR+ ) -> ( 0 <_ ( 2 logb N ) <-> 1 <_ N ) ) |
23 |
20 21 22
|
syl2anc |
|- ( N e. NN -> ( 0 <_ ( 2 logb N ) <-> 1 <_ N ) ) |
24 |
|
logblt1b |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ N e. RR+ ) -> ( ( 2 logb N ) < 1 <-> N < 2 ) ) |
25 |
20 21 24
|
syl2anc |
|- ( N e. NN -> ( ( 2 logb N ) < 1 <-> N < 2 ) ) |
26 |
23 25
|
anbi12d |
|- ( N e. NN -> ( ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) <-> ( 1 <_ N /\ N < 2 ) ) ) |
27 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
28 |
27
|
breq2i |
|- ( N < 2 <-> N < ( 1 + 1 ) ) |
29 |
28
|
a1i |
|- ( N e. NN -> ( N < 2 <-> N < ( 1 + 1 ) ) ) |
30 |
29
|
anbi2d |
|- ( N e. NN -> ( ( 1 <_ N /\ N < 2 ) <-> ( 1 <_ N /\ N < ( 1 + 1 ) ) ) ) |
31 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
32 |
|
1zzd |
|- ( N e. NN -> 1 e. ZZ ) |
33 |
|
flbi |
|- ( ( N e. RR /\ 1 e. ZZ ) -> ( ( |_ ` N ) = 1 <-> ( 1 <_ N /\ N < ( 1 + 1 ) ) ) ) |
34 |
31 32 33
|
syl2anc |
|- ( N e. NN -> ( ( |_ ` N ) = 1 <-> ( 1 <_ N /\ N < ( 1 + 1 ) ) ) ) |
35 |
30 34
|
bitr4d |
|- ( N e. NN -> ( ( 1 <_ N /\ N < 2 ) <-> ( |_ ` N ) = 1 ) ) |
36 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
37 |
|
flid |
|- ( N e. ZZ -> ( |_ ` N ) = N ) |
38 |
36 37
|
syl |
|- ( N e. NN -> ( |_ ` N ) = N ) |
39 |
38
|
eqcomd |
|- ( N e. NN -> N = ( |_ ` N ) ) |
40 |
39
|
adantr |
|- ( ( N e. NN /\ ( |_ ` N ) = 1 ) -> N = ( |_ ` N ) ) |
41 |
|
simpr |
|- ( ( N e. NN /\ ( |_ ` N ) = 1 ) -> ( |_ ` N ) = 1 ) |
42 |
40 41
|
eqtrd |
|- ( ( N e. NN /\ ( |_ ` N ) = 1 ) -> N = 1 ) |
43 |
42
|
ex |
|- ( N e. NN -> ( ( |_ ` N ) = 1 -> N = 1 ) ) |
44 |
35 43
|
sylbid |
|- ( N e. NN -> ( ( 1 <_ N /\ N < 2 ) -> N = 1 ) ) |
45 |
26 44
|
sylbid |
|- ( N e. NN -> ( ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) -> N = 1 ) ) |
46 |
16 45
|
impbid2 |
|- ( N e. NN -> ( N = 1 <-> ( 0 <_ ( 2 logb N ) /\ ( 2 logb N ) < 1 ) ) ) |