| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2rp |
|- 2 e. RR+ |
| 2 |
1
|
a1i |
|- ( I e. NN -> 2 e. RR+ ) |
| 3 |
|
2nn0 |
|- 2 e. NN0 |
| 4 |
3
|
a1i |
|- ( I e. NN -> 2 e. NN0 ) |
| 5 |
|
nnnn0 |
|- ( I e. NN -> I e. NN0 ) |
| 6 |
4 5
|
nn0expcld |
|- ( I e. NN -> ( 2 ^ I ) e. NN0 ) |
| 7 |
|
nnge1 |
|- ( I e. NN -> 1 <_ I ) |
| 8 |
|
2re |
|- 2 e. RR |
| 9 |
8
|
a1i |
|- ( I e. NN -> 2 e. RR ) |
| 10 |
|
1zzd |
|- ( I e. NN -> 1 e. ZZ ) |
| 11 |
|
nnz |
|- ( I e. NN -> I e. ZZ ) |
| 12 |
|
1lt2 |
|- 1 < 2 |
| 13 |
12
|
a1i |
|- ( I e. NN -> 1 < 2 ) |
| 14 |
9 10 11 13
|
leexp2d |
|- ( I e. NN -> ( 1 <_ I <-> ( 2 ^ 1 ) <_ ( 2 ^ I ) ) ) |
| 15 |
|
2cn |
|- 2 e. CC |
| 16 |
|
exp1 |
|- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
| 17 |
15 16
|
ax-mp |
|- ( 2 ^ 1 ) = 2 |
| 18 |
17
|
a1i |
|- ( I e. NN -> ( 2 ^ 1 ) = 2 ) |
| 19 |
18
|
breq1d |
|- ( I e. NN -> ( ( 2 ^ 1 ) <_ ( 2 ^ I ) <-> 2 <_ ( 2 ^ I ) ) ) |
| 20 |
14 19
|
bitrd |
|- ( I e. NN -> ( 1 <_ I <-> 2 <_ ( 2 ^ I ) ) ) |
| 21 |
7 20
|
mpbid |
|- ( I e. NN -> 2 <_ ( 2 ^ I ) ) |
| 22 |
|
nn0ge2m1nn |
|- ( ( ( 2 ^ I ) e. NN0 /\ 2 <_ ( 2 ^ I ) ) -> ( ( 2 ^ I ) - 1 ) e. NN ) |
| 23 |
6 21 22
|
syl2anc |
|- ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. NN ) |
| 24 |
23
|
nnrpd |
|- ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. RR+ ) |
| 25 |
|
1ne2 |
|- 1 =/= 2 |
| 26 |
25
|
necomi |
|- 2 =/= 1 |
| 27 |
26
|
a1i |
|- ( I e. NN -> 2 =/= 1 ) |
| 28 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ ( ( 2 ^ I ) - 1 ) e. RR+ /\ 2 =/= 1 ) -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR ) |
| 29 |
2 24 27 28
|
syl3anc |
|- ( I e. NN -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR ) |
| 30 |
29
|
flcld |
|- ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. ZZ ) |
| 31 |
|
peano2zm |
|- ( I e. ZZ -> ( I - 1 ) e. ZZ ) |
| 32 |
11 31
|
syl |
|- ( I e. NN -> ( I - 1 ) e. ZZ ) |
| 33 |
|
2z |
|- 2 e. ZZ |
| 34 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 35 |
33 34
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 36 |
|
nnlogbexp |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( I - 1 ) e. ZZ ) -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) = ( I - 1 ) ) |
| 37 |
35 32 36
|
sylancr |
|- ( I e. NN -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) = ( I - 1 ) ) |
| 38 |
37
|
fveq2d |
|- ( I e. NN -> ( |_ ` ( 2 logb ( 2 ^ ( I - 1 ) ) ) ) = ( |_ ` ( I - 1 ) ) ) |
| 39 |
|
flid |
|- ( ( I - 1 ) e. ZZ -> ( |_ ` ( I - 1 ) ) = ( I - 1 ) ) |
| 40 |
32 39
|
syl |
|- ( I e. NN -> ( |_ ` ( I - 1 ) ) = ( I - 1 ) ) |
| 41 |
38 40
|
eqtrd |
|- ( I e. NN -> ( |_ ` ( 2 logb ( 2 ^ ( I - 1 ) ) ) ) = ( I - 1 ) ) |
| 42 |
|
2nn |
|- 2 e. NN |
| 43 |
42
|
a1i |
|- ( I e. NN -> 2 e. NN ) |
| 44 |
|
nnm1nn0 |
|- ( I e. NN -> ( I - 1 ) e. NN0 ) |
| 45 |
43 44
|
nnexpcld |
|- ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. NN ) |
| 46 |
45
|
nnrpd |
|- ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. RR+ ) |
| 47 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ ( 2 ^ ( I - 1 ) ) e. RR+ /\ 2 =/= 1 ) -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) e. RR ) |
| 48 |
2 46 27 47
|
syl3anc |
|- ( I e. NN -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) e. RR ) |
| 49 |
|
pw2m1lepw2m1 |
|- ( I e. NN -> ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) ) |
| 50 |
35
|
a1i |
|- ( I e. NN -> 2 e. ( ZZ>= ` 2 ) ) |
| 51 |
|
logbleb |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( 2 ^ ( I - 1 ) ) e. RR+ /\ ( ( 2 ^ I ) - 1 ) e. RR+ ) -> ( ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) <-> ( 2 logb ( 2 ^ ( I - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) |
| 52 |
50 46 24 51
|
syl3anc |
|- ( I e. NN -> ( ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) <-> ( 2 logb ( 2 ^ ( I - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) |
| 53 |
49 52
|
mpbid |
|- ( I e. NN -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) |
| 54 |
|
flwordi |
|- ( ( ( 2 logb ( 2 ^ ( I - 1 ) ) ) e. RR /\ ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR /\ ( 2 logb ( 2 ^ ( I - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) -> ( |_ ` ( 2 logb ( 2 ^ ( I - 1 ) ) ) ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) |
| 55 |
48 29 53 54
|
syl3anc |
|- ( I e. NN -> ( |_ ` ( 2 logb ( 2 ^ ( I - 1 ) ) ) ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) |
| 56 |
41 55
|
eqbrtrrd |
|- ( I e. NN -> ( I - 1 ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) |
| 57 |
43 5
|
nnexpcld |
|- ( I e. NN -> ( 2 ^ I ) e. NN ) |
| 58 |
57
|
nnnn0d |
|- ( I e. NN -> ( 2 ^ I ) e. NN0 ) |
| 59 |
58 21 22
|
syl2anc |
|- ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. NN ) |
| 60 |
59
|
nnrpd |
|- ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. RR+ ) |
| 61 |
2 60 27 28
|
syl3anc |
|- ( I e. NN -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR ) |
| 62 |
61
|
flcld |
|- ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. ZZ ) |
| 63 |
62
|
zred |
|- ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. RR ) |
| 64 |
|
nnre |
|- ( I e. NN -> I e. RR ) |
| 65 |
|
peano2rem |
|- ( I e. RR -> ( I - 1 ) e. RR ) |
| 66 |
64 65
|
syl |
|- ( I e. NN -> ( I - 1 ) e. RR ) |
| 67 |
|
peano2re |
|- ( ( I - 1 ) e. RR -> ( ( I - 1 ) + 1 ) e. RR ) |
| 68 |
66 67
|
syl |
|- ( I e. NN -> ( ( I - 1 ) + 1 ) e. RR ) |
| 69 |
|
flle |
|- ( ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) |
| 70 |
29 69
|
syl |
|- ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) |
| 71 |
57
|
nnrpd |
|- ( I e. NN -> ( 2 ^ I ) e. RR+ ) |
| 72 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ ( 2 ^ I ) e. RR+ /\ 2 =/= 1 ) -> ( 2 logb ( 2 ^ I ) ) e. RR ) |
| 73 |
2 71 27 72
|
syl3anc |
|- ( I e. NN -> ( 2 logb ( 2 ^ I ) ) e. RR ) |
| 74 |
57
|
nnred |
|- ( I e. NN -> ( 2 ^ I ) e. RR ) |
| 75 |
74
|
ltm1d |
|- ( I e. NN -> ( ( 2 ^ I ) - 1 ) < ( 2 ^ I ) ) |
| 76 |
|
logblt |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( ( 2 ^ I ) - 1 ) e. RR+ /\ ( 2 ^ I ) e. RR+ ) -> ( ( ( 2 ^ I ) - 1 ) < ( 2 ^ I ) <-> ( 2 logb ( ( 2 ^ I ) - 1 ) ) < ( 2 logb ( 2 ^ I ) ) ) ) |
| 77 |
50 24 71 76
|
syl3anc |
|- ( I e. NN -> ( ( ( 2 ^ I ) - 1 ) < ( 2 ^ I ) <-> ( 2 logb ( ( 2 ^ I ) - 1 ) ) < ( 2 logb ( 2 ^ I ) ) ) ) |
| 78 |
75 77
|
mpbid |
|- ( I e. NN -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) < ( 2 logb ( 2 ^ I ) ) ) |
| 79 |
64
|
leidd |
|- ( I e. NN -> I <_ I ) |
| 80 |
|
nnlogbexp |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ I e. ZZ ) -> ( 2 logb ( 2 ^ I ) ) = I ) |
| 81 |
35 11 80
|
sylancr |
|- ( I e. NN -> ( 2 logb ( 2 ^ I ) ) = I ) |
| 82 |
|
nncn |
|- ( I e. NN -> I e. CC ) |
| 83 |
|
npcan1 |
|- ( I e. CC -> ( ( I - 1 ) + 1 ) = I ) |
| 84 |
82 83
|
syl |
|- ( I e. NN -> ( ( I - 1 ) + 1 ) = I ) |
| 85 |
79 81 84
|
3brtr4d |
|- ( I e. NN -> ( 2 logb ( 2 ^ I ) ) <_ ( ( I - 1 ) + 1 ) ) |
| 86 |
29 73 68 78 85
|
ltletrd |
|- ( I e. NN -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) < ( ( I - 1 ) + 1 ) ) |
| 87 |
63 29 68 70 86
|
lelttrd |
|- ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) < ( ( I - 1 ) + 1 ) ) |
| 88 |
|
zgeltp1eq |
|- ( ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. ZZ /\ ( I - 1 ) e. ZZ ) -> ( ( ( I - 1 ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) /\ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) < ( ( I - 1 ) + 1 ) ) -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) = ( I - 1 ) ) ) |
| 89 |
88
|
imp |
|- ( ( ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. ZZ /\ ( I - 1 ) e. ZZ ) /\ ( ( I - 1 ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) /\ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) < ( ( I - 1 ) + 1 ) ) ) -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) = ( I - 1 ) ) |
| 90 |
30 32 56 87 89
|
syl22anc |
|- ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) = ( I - 1 ) ) |