| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2rp |  |-  2 e. RR+ | 
						
							| 2 | 1 | a1i |  |-  ( I e. NN -> 2 e. RR+ ) | 
						
							| 3 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 4 | 3 | a1i |  |-  ( I e. NN -> 2 e. NN0 ) | 
						
							| 5 |  | nnnn0 |  |-  ( I e. NN -> I e. NN0 ) | 
						
							| 6 | 4 5 | nn0expcld |  |-  ( I e. NN -> ( 2 ^ I ) e. NN0 ) | 
						
							| 7 |  | nnge1 |  |-  ( I e. NN -> 1 <_ I ) | 
						
							| 8 |  | 2re |  |-  2 e. RR | 
						
							| 9 | 8 | a1i |  |-  ( I e. NN -> 2 e. RR ) | 
						
							| 10 |  | 1zzd |  |-  ( I e. NN -> 1 e. ZZ ) | 
						
							| 11 |  | nnz |  |-  ( I e. NN -> I e. ZZ ) | 
						
							| 12 |  | 1lt2 |  |-  1 < 2 | 
						
							| 13 | 12 | a1i |  |-  ( I e. NN -> 1 < 2 ) | 
						
							| 14 | 9 10 11 13 | leexp2d |  |-  ( I e. NN -> ( 1 <_ I <-> ( 2 ^ 1 ) <_ ( 2 ^ I ) ) ) | 
						
							| 15 |  | 2cn |  |-  2 e. CC | 
						
							| 16 |  | exp1 |  |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( 2 ^ 1 ) = 2 | 
						
							| 18 | 17 | a1i |  |-  ( I e. NN -> ( 2 ^ 1 ) = 2 ) | 
						
							| 19 | 18 | breq1d |  |-  ( I e. NN -> ( ( 2 ^ 1 ) <_ ( 2 ^ I ) <-> 2 <_ ( 2 ^ I ) ) ) | 
						
							| 20 | 14 19 | bitrd |  |-  ( I e. NN -> ( 1 <_ I <-> 2 <_ ( 2 ^ I ) ) ) | 
						
							| 21 | 7 20 | mpbid |  |-  ( I e. NN -> 2 <_ ( 2 ^ I ) ) | 
						
							| 22 |  | nn0ge2m1nn |  |-  ( ( ( 2 ^ I ) e. NN0 /\ 2 <_ ( 2 ^ I ) ) -> ( ( 2 ^ I ) - 1 ) e. NN ) | 
						
							| 23 | 6 21 22 | syl2anc |  |-  ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. NN ) | 
						
							| 24 | 23 | nnrpd |  |-  ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. RR+ ) | 
						
							| 25 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 26 | 25 | necomi |  |-  2 =/= 1 | 
						
							| 27 | 26 | a1i |  |-  ( I e. NN -> 2 =/= 1 ) | 
						
							| 28 |  | relogbcl |  |-  ( ( 2 e. RR+ /\ ( ( 2 ^ I ) - 1 ) e. RR+ /\ 2 =/= 1 ) -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR ) | 
						
							| 29 | 2 24 27 28 | syl3anc |  |-  ( I e. NN -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR ) | 
						
							| 30 | 29 | flcld |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. ZZ ) | 
						
							| 31 |  | peano2zm |  |-  ( I e. ZZ -> ( I - 1 ) e. ZZ ) | 
						
							| 32 | 11 31 | syl |  |-  ( I e. NN -> ( I - 1 ) e. ZZ ) | 
						
							| 33 |  | 2z |  |-  2 e. ZZ | 
						
							| 34 |  | uzid |  |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 35 | 33 34 | ax-mp |  |-  2 e. ( ZZ>= ` 2 ) | 
						
							| 36 |  | nnlogbexp |  |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ ( I - 1 ) e. ZZ ) -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) = ( I - 1 ) ) | 
						
							| 37 | 35 32 36 | sylancr |  |-  ( I e. NN -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) = ( I - 1 ) ) | 
						
							| 38 | 37 | fveq2d |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( 2 ^ ( I - 1 ) ) ) ) = ( |_ ` ( I - 1 ) ) ) | 
						
							| 39 |  | flid |  |-  ( ( I - 1 ) e. ZZ -> ( |_ ` ( I - 1 ) ) = ( I - 1 ) ) | 
						
							| 40 | 32 39 | syl |  |-  ( I e. NN -> ( |_ ` ( I - 1 ) ) = ( I - 1 ) ) | 
						
							| 41 | 38 40 | eqtrd |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( 2 ^ ( I - 1 ) ) ) ) = ( I - 1 ) ) | 
						
							| 42 |  | 2nn |  |-  2 e. NN | 
						
							| 43 | 42 | a1i |  |-  ( I e. NN -> 2 e. NN ) | 
						
							| 44 |  | nnm1nn0 |  |-  ( I e. NN -> ( I - 1 ) e. NN0 ) | 
						
							| 45 | 43 44 | nnexpcld |  |-  ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. NN ) | 
						
							| 46 | 45 | nnrpd |  |-  ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. RR+ ) | 
						
							| 47 |  | relogbcl |  |-  ( ( 2 e. RR+ /\ ( 2 ^ ( I - 1 ) ) e. RR+ /\ 2 =/= 1 ) -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) e. RR ) | 
						
							| 48 | 2 46 27 47 | syl3anc |  |-  ( I e. NN -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) e. RR ) | 
						
							| 49 |  | pw2m1lepw2m1 |  |-  ( I e. NN -> ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) ) | 
						
							| 50 | 35 | a1i |  |-  ( I e. NN -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 51 |  | logbleb |  |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ ( 2 ^ ( I - 1 ) ) e. RR+ /\ ( ( 2 ^ I ) - 1 ) e. RR+ ) -> ( ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) <-> ( 2 logb ( 2 ^ ( I - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) | 
						
							| 52 | 50 46 24 51 | syl3anc |  |-  ( I e. NN -> ( ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) <-> ( 2 logb ( 2 ^ ( I - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) | 
						
							| 53 | 49 52 | mpbid |  |-  ( I e. NN -> ( 2 logb ( 2 ^ ( I - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) | 
						
							| 54 |  | flwordi |  |-  ( ( ( 2 logb ( 2 ^ ( I - 1 ) ) ) e. RR /\ ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR /\ ( 2 logb ( 2 ^ ( I - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) -> ( |_ ` ( 2 logb ( 2 ^ ( I - 1 ) ) ) ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) | 
						
							| 55 | 48 29 53 54 | syl3anc |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( 2 ^ ( I - 1 ) ) ) ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) | 
						
							| 56 | 41 55 | eqbrtrrd |  |-  ( I e. NN -> ( I - 1 ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) ) | 
						
							| 57 | 43 5 | nnexpcld |  |-  ( I e. NN -> ( 2 ^ I ) e. NN ) | 
						
							| 58 | 57 | nnnn0d |  |-  ( I e. NN -> ( 2 ^ I ) e. NN0 ) | 
						
							| 59 | 58 21 22 | syl2anc |  |-  ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. NN ) | 
						
							| 60 | 59 | nnrpd |  |-  ( I e. NN -> ( ( 2 ^ I ) - 1 ) e. RR+ ) | 
						
							| 61 | 2 60 27 28 | syl3anc |  |-  ( I e. NN -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR ) | 
						
							| 62 | 61 | flcld |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. ZZ ) | 
						
							| 63 | 62 | zred |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. RR ) | 
						
							| 64 |  | nnre |  |-  ( I e. NN -> I e. RR ) | 
						
							| 65 |  | peano2rem |  |-  ( I e. RR -> ( I - 1 ) e. RR ) | 
						
							| 66 | 64 65 | syl |  |-  ( I e. NN -> ( I - 1 ) e. RR ) | 
						
							| 67 |  | peano2re |  |-  ( ( I - 1 ) e. RR -> ( ( I - 1 ) + 1 ) e. RR ) | 
						
							| 68 | 66 67 | syl |  |-  ( I e. NN -> ( ( I - 1 ) + 1 ) e. RR ) | 
						
							| 69 |  | flle |  |-  ( ( 2 logb ( ( 2 ^ I ) - 1 ) ) e. RR -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) | 
						
							| 70 | 29 69 | syl |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) <_ ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) | 
						
							| 71 | 57 | nnrpd |  |-  ( I e. NN -> ( 2 ^ I ) e. RR+ ) | 
						
							| 72 |  | relogbcl |  |-  ( ( 2 e. RR+ /\ ( 2 ^ I ) e. RR+ /\ 2 =/= 1 ) -> ( 2 logb ( 2 ^ I ) ) e. RR ) | 
						
							| 73 | 2 71 27 72 | syl3anc |  |-  ( I e. NN -> ( 2 logb ( 2 ^ I ) ) e. RR ) | 
						
							| 74 | 57 | nnred |  |-  ( I e. NN -> ( 2 ^ I ) e. RR ) | 
						
							| 75 | 74 | ltm1d |  |-  ( I e. NN -> ( ( 2 ^ I ) - 1 ) < ( 2 ^ I ) ) | 
						
							| 76 |  | logblt |  |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ ( ( 2 ^ I ) - 1 ) e. RR+ /\ ( 2 ^ I ) e. RR+ ) -> ( ( ( 2 ^ I ) - 1 ) < ( 2 ^ I ) <-> ( 2 logb ( ( 2 ^ I ) - 1 ) ) < ( 2 logb ( 2 ^ I ) ) ) ) | 
						
							| 77 | 50 24 71 76 | syl3anc |  |-  ( I e. NN -> ( ( ( 2 ^ I ) - 1 ) < ( 2 ^ I ) <-> ( 2 logb ( ( 2 ^ I ) - 1 ) ) < ( 2 logb ( 2 ^ I ) ) ) ) | 
						
							| 78 | 75 77 | mpbid |  |-  ( I e. NN -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) < ( 2 logb ( 2 ^ I ) ) ) | 
						
							| 79 | 64 | leidd |  |-  ( I e. NN -> I <_ I ) | 
						
							| 80 |  | nnlogbexp |  |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ I e. ZZ ) -> ( 2 logb ( 2 ^ I ) ) = I ) | 
						
							| 81 | 35 11 80 | sylancr |  |-  ( I e. NN -> ( 2 logb ( 2 ^ I ) ) = I ) | 
						
							| 82 |  | nncn |  |-  ( I e. NN -> I e. CC ) | 
						
							| 83 |  | npcan1 |  |-  ( I e. CC -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 84 | 82 83 | syl |  |-  ( I e. NN -> ( ( I - 1 ) + 1 ) = I ) | 
						
							| 85 | 79 81 84 | 3brtr4d |  |-  ( I e. NN -> ( 2 logb ( 2 ^ I ) ) <_ ( ( I - 1 ) + 1 ) ) | 
						
							| 86 | 29 73 68 78 85 | ltletrd |  |-  ( I e. NN -> ( 2 logb ( ( 2 ^ I ) - 1 ) ) < ( ( I - 1 ) + 1 ) ) | 
						
							| 87 | 63 29 68 70 86 | lelttrd |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) < ( ( I - 1 ) + 1 ) ) | 
						
							| 88 |  | zgeltp1eq |  |-  ( ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. ZZ /\ ( I - 1 ) e. ZZ ) -> ( ( ( I - 1 ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) /\ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) < ( ( I - 1 ) + 1 ) ) -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) = ( I - 1 ) ) ) | 
						
							| 89 | 88 | imp |  |-  ( ( ( ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) e. ZZ /\ ( I - 1 ) e. ZZ ) /\ ( ( I - 1 ) <_ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) /\ ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) < ( ( I - 1 ) + 1 ) ) ) -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) = ( I - 1 ) ) | 
						
							| 90 | 30 32 56 87 89 | syl22anc |  |-  ( I e. NN -> ( |_ ` ( 2 logb ( ( 2 ^ I ) - 1 ) ) ) = ( I - 1 ) ) |