| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> X e. RR+ ) |
| 2 |
1
|
relogcld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( log ` X ) e. RR ) |
| 3 |
|
simp3 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> Y e. RR+ ) |
| 4 |
3
|
relogcld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( log ` Y ) e. RR ) |
| 5 |
|
simp1 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> B e. ( ZZ>= ` 2 ) ) |
| 6 |
|
eluzelz |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) |
| 7 |
5 6
|
syl |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> B e. ZZ ) |
| 8 |
7
|
zred |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> B e. RR ) |
| 9 |
|
1z |
|- 1 e. ZZ |
| 10 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 11 |
10
|
fveq2i |
|- ( ZZ>= ` ( 1 + 1 ) ) = ( ZZ>= ` 2 ) |
| 12 |
5 11
|
eleqtrrdi |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> B e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 13 |
|
eluzp1l |
|- ( ( 1 e. ZZ /\ B e. ( ZZ>= ` ( 1 + 1 ) ) ) -> 1 < B ) |
| 14 |
9 12 13
|
sylancr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> 1 < B ) |
| 15 |
8 14
|
rplogcld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( log ` B ) e. RR+ ) |
| 16 |
2 4 15
|
ltdiv1d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( ( log ` X ) < ( log ` Y ) <-> ( ( log ` X ) / ( log ` B ) ) < ( ( log ` Y ) / ( log ` B ) ) ) ) |
| 17 |
|
logltb |
|- ( ( X e. RR+ /\ Y e. RR+ ) -> ( X < Y <-> ( log ` X ) < ( log ` Y ) ) ) |
| 18 |
17
|
3adant1 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( X < Y <-> ( log ` X ) < ( log ` Y ) ) ) |
| 19 |
|
relogbval |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
| 20 |
19
|
3adant3 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
| 21 |
|
relogbval |
|- ( ( B e. ( ZZ>= ` 2 ) /\ Y e. RR+ ) -> ( B logb Y ) = ( ( log ` Y ) / ( log ` B ) ) ) |
| 22 |
21
|
3adant2 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( B logb Y ) = ( ( log ` Y ) / ( log ` B ) ) ) |
| 23 |
20 22
|
breq12d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( ( B logb X ) < ( B logb Y ) <-> ( ( log ` X ) / ( log ` B ) ) < ( ( log ` Y ) / ( log ` B ) ) ) ) |
| 24 |
16 18 23
|
3bitr4d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ /\ Y e. RR+ ) -> ( X < Y <-> ( B logb X ) < ( B logb Y ) ) ) |