Metamath Proof Explorer


Theorem logblt

Description: The general logarithm function is strictly monotone/increasing. Property 2 of Cohen4 p. 377. See logltb . (Contributed by Stefan O'Rear, 19-Oct-2014) (Revised by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion logblt B2X+Y+X<YlogBX<logBY

Proof

Step Hyp Ref Expression
1 simp2 B2X+Y+X+
2 1 relogcld B2X+Y+logX
3 simp3 B2X+Y+Y+
4 3 relogcld B2X+Y+logY
5 simp1 B2X+Y+B2
6 eluzelz B2B
7 5 6 syl B2X+Y+B
8 7 zred B2X+Y+B
9 1z 1
10 1p1e2 1+1=2
11 10 fveq2i 1+1=2
12 5 11 eleqtrrdi B2X+Y+B1+1
13 eluzp1l 1B1+11<B
14 9 12 13 sylancr B2X+Y+1<B
15 8 14 rplogcld B2X+Y+logB+
16 2 4 15 ltdiv1d B2X+Y+logX<logYlogXlogB<logYlogB
17 logltb X+Y+X<YlogX<logY
18 17 3adant1 B2X+Y+X<YlogX<logY
19 relogbval B2X+logBX=logXlogB
20 19 3adant3 B2X+Y+logBX=logXlogB
21 relogbval B2Y+logBY=logYlogB
22 21 3adant2 B2X+Y+logBY=logYlogB
23 20 22 breq12d B2X+Y+logBX<logBYlogXlogB<logYlogB
24 16 18 23 3bitr4d B2X+Y+X<YlogBX<logBY