Metamath Proof Explorer


Theorem rplogcld

Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses relogefd.1 φA
rplogcld.2 φ1<A
Assertion rplogcld φlogA+

Proof

Step Hyp Ref Expression
1 relogefd.1 φA
2 rplogcld.2 φ1<A
3 rplogcl A1<AlogA+
4 1 2 3 syl2anc φlogA+