| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1lt2 |  |-  1 < 2 | 
						
							| 2 |  | nncn |  |-  ( I e. NN -> I e. CC ) | 
						
							| 3 |  | 1cnd |  |-  ( I e. NN -> 1 e. CC ) | 
						
							| 4 | 2 3 | nncand |  |-  ( I e. NN -> ( I - ( I - 1 ) ) = 1 ) | 
						
							| 5 | 4 | oveq2d |  |-  ( I e. NN -> ( 2 ^ ( I - ( I - 1 ) ) ) = ( 2 ^ 1 ) ) | 
						
							| 6 |  | 2cn |  |-  2 e. CC | 
						
							| 7 | 6 | a1i |  |-  ( I e. NN -> 2 e. CC ) | 
						
							| 8 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 9 | 8 | a1i |  |-  ( I e. NN -> 2 =/= 0 ) | 
						
							| 10 |  | nnz |  |-  ( I e. NN -> I e. ZZ ) | 
						
							| 11 |  | peano2zm |  |-  ( I e. ZZ -> ( I - 1 ) e. ZZ ) | 
						
							| 12 | 10 11 | syl |  |-  ( I e. NN -> ( I - 1 ) e. ZZ ) | 
						
							| 13 | 7 9 12 10 | expsubd |  |-  ( I e. NN -> ( 2 ^ ( I - ( I - 1 ) ) ) = ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) ) | 
						
							| 14 |  | exp1 |  |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) | 
						
							| 15 | 6 14 | mp1i |  |-  ( I e. NN -> ( 2 ^ 1 ) = 2 ) | 
						
							| 16 | 5 13 15 | 3eqtr3d |  |-  ( I e. NN -> ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) = 2 ) | 
						
							| 17 | 1 16 | breqtrrid |  |-  ( I e. NN -> 1 < ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) ) | 
						
							| 18 |  | 2nn |  |-  2 e. NN | 
						
							| 19 | 18 | a1i |  |-  ( I e. NN -> 2 e. NN ) | 
						
							| 20 |  | nnm1nn0 |  |-  ( I e. NN -> ( I - 1 ) e. NN0 ) | 
						
							| 21 | 19 20 | nnexpcld |  |-  ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. NN ) | 
						
							| 22 | 21 | nnrpd |  |-  ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. RR+ ) | 
						
							| 23 |  | 2z |  |-  2 e. ZZ | 
						
							| 24 |  | nnnn0 |  |-  ( I e. NN -> I e. NN0 ) | 
						
							| 25 |  | zexpcl |  |-  ( ( 2 e. ZZ /\ I e. NN0 ) -> ( 2 ^ I ) e. ZZ ) | 
						
							| 26 | 23 24 25 | sylancr |  |-  ( I e. NN -> ( 2 ^ I ) e. ZZ ) | 
						
							| 27 | 26 | zred |  |-  ( I e. NN -> ( 2 ^ I ) e. RR ) | 
						
							| 28 |  | divgt1b |  |-  ( ( ( 2 ^ ( I - 1 ) ) e. RR+ /\ ( 2 ^ I ) e. RR ) -> ( ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) <-> 1 < ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) ) ) | 
						
							| 29 | 22 27 28 | syl2anc |  |-  ( I e. NN -> ( ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) <-> 1 < ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) ) ) | 
						
							| 30 | 17 29 | mpbird |  |-  ( I e. NN -> ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) ) | 
						
							| 31 | 21 | nnzd |  |-  ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. ZZ ) | 
						
							| 32 |  | zltlem1 |  |-  ( ( ( 2 ^ ( I - 1 ) ) e. ZZ /\ ( 2 ^ I ) e. ZZ ) -> ( ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) <-> ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) ) ) | 
						
							| 33 | 31 26 32 | syl2anc |  |-  ( I e. NN -> ( ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) <-> ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) ) ) | 
						
							| 34 | 30 33 | mpbid |  |-  ( I e. NN -> ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) ) |