Step |
Hyp |
Ref |
Expression |
1 |
|
1lt2 |
|- 1 < 2 |
2 |
|
nncn |
|- ( I e. NN -> I e. CC ) |
3 |
|
1cnd |
|- ( I e. NN -> 1 e. CC ) |
4 |
2 3
|
nncand |
|- ( I e. NN -> ( I - ( I - 1 ) ) = 1 ) |
5 |
4
|
oveq2d |
|- ( I e. NN -> ( 2 ^ ( I - ( I - 1 ) ) ) = ( 2 ^ 1 ) ) |
6 |
|
2cn |
|- 2 e. CC |
7 |
6
|
a1i |
|- ( I e. NN -> 2 e. CC ) |
8 |
|
2ne0 |
|- 2 =/= 0 |
9 |
8
|
a1i |
|- ( I e. NN -> 2 =/= 0 ) |
10 |
|
nnz |
|- ( I e. NN -> I e. ZZ ) |
11 |
|
peano2zm |
|- ( I e. ZZ -> ( I - 1 ) e. ZZ ) |
12 |
10 11
|
syl |
|- ( I e. NN -> ( I - 1 ) e. ZZ ) |
13 |
7 9 12 10
|
expsubd |
|- ( I e. NN -> ( 2 ^ ( I - ( I - 1 ) ) ) = ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) ) |
14 |
|
exp1 |
|- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
15 |
6 14
|
mp1i |
|- ( I e. NN -> ( 2 ^ 1 ) = 2 ) |
16 |
5 13 15
|
3eqtr3d |
|- ( I e. NN -> ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) = 2 ) |
17 |
1 16
|
breqtrrid |
|- ( I e. NN -> 1 < ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) ) |
18 |
|
2nn |
|- 2 e. NN |
19 |
18
|
a1i |
|- ( I e. NN -> 2 e. NN ) |
20 |
|
nnm1nn0 |
|- ( I e. NN -> ( I - 1 ) e. NN0 ) |
21 |
19 20
|
nnexpcld |
|- ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. NN ) |
22 |
21
|
nnrpd |
|- ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. RR+ ) |
23 |
|
2z |
|- 2 e. ZZ |
24 |
|
nnnn0 |
|- ( I e. NN -> I e. NN0 ) |
25 |
|
zexpcl |
|- ( ( 2 e. ZZ /\ I e. NN0 ) -> ( 2 ^ I ) e. ZZ ) |
26 |
23 24 25
|
sylancr |
|- ( I e. NN -> ( 2 ^ I ) e. ZZ ) |
27 |
26
|
zred |
|- ( I e. NN -> ( 2 ^ I ) e. RR ) |
28 |
|
divgt1b |
|- ( ( ( 2 ^ ( I - 1 ) ) e. RR+ /\ ( 2 ^ I ) e. RR ) -> ( ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) <-> 1 < ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) ) ) |
29 |
22 27 28
|
syl2anc |
|- ( I e. NN -> ( ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) <-> 1 < ( ( 2 ^ I ) / ( 2 ^ ( I - 1 ) ) ) ) ) |
30 |
17 29
|
mpbird |
|- ( I e. NN -> ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) ) |
31 |
21
|
nnzd |
|- ( I e. NN -> ( 2 ^ ( I - 1 ) ) e. ZZ ) |
32 |
|
zltlem1 |
|- ( ( ( 2 ^ ( I - 1 ) ) e. ZZ /\ ( 2 ^ I ) e. ZZ ) -> ( ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) <-> ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) ) ) |
33 |
31 26 32
|
syl2anc |
|- ( I e. NN -> ( ( 2 ^ ( I - 1 ) ) < ( 2 ^ I ) <-> ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) ) ) |
34 |
30 33
|
mpbid |
|- ( I e. NN -> ( 2 ^ ( I - 1 ) ) <_ ( ( 2 ^ I ) - 1 ) ) |