Step |
Hyp |
Ref |
Expression |
1 |
|
1lt2 |
⊢ 1 < 2 |
2 |
|
nncn |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℂ ) |
3 |
|
1cnd |
⊢ ( 𝐼 ∈ ℕ → 1 ∈ ℂ ) |
4 |
2 3
|
nncand |
⊢ ( 𝐼 ∈ ℕ → ( 𝐼 − ( 𝐼 − 1 ) ) = 1 ) |
5 |
4
|
oveq2d |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − ( 𝐼 − 1 ) ) ) = ( 2 ↑ 1 ) ) |
6 |
|
2cn |
⊢ 2 ∈ ℂ |
7 |
6
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℂ ) |
8 |
|
2ne0 |
⊢ 2 ≠ 0 |
9 |
8
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ≠ 0 ) |
10 |
|
nnz |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℤ ) |
11 |
|
peano2zm |
⊢ ( 𝐼 ∈ ℤ → ( 𝐼 − 1 ) ∈ ℤ ) |
12 |
10 11
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( 𝐼 − 1 ) ∈ ℤ ) |
13 |
7 9 12 10
|
expsubd |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − ( 𝐼 − 1 ) ) ) = ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) ) |
14 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
15 |
6 14
|
mp1i |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 1 ) = 2 ) |
16 |
5 13 15
|
3eqtr3d |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) = 2 ) |
17 |
1 16
|
breqtrrid |
⊢ ( 𝐼 ∈ ℕ → 1 < ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) ) |
18 |
|
2nn |
⊢ 2 ∈ ℕ |
19 |
18
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℕ ) |
20 |
|
nnm1nn0 |
⊢ ( 𝐼 ∈ ℕ → ( 𝐼 − 1 ) ∈ ℕ0 ) |
21 |
19 20
|
nnexpcld |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℕ ) |
22 |
21
|
nnrpd |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℝ+ ) |
23 |
|
2z |
⊢ 2 ∈ ℤ |
24 |
|
nnnn0 |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℕ0 ) |
25 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → ( 2 ↑ 𝐼 ) ∈ ℤ ) |
26 |
23 24 25
|
sylancr |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℤ ) |
27 |
26
|
zred |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℝ ) |
28 |
|
divgt1b |
⊢ ( ( ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℝ+ ∧ ( 2 ↑ 𝐼 ) ∈ ℝ ) → ( ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ↔ 1 < ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) ) ) |
29 |
22 27 28
|
syl2anc |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ↔ 1 < ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) ) ) |
30 |
17 29
|
mpbird |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ) |
31 |
21
|
nnzd |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℤ ) |
32 |
|
zltlem1 |
⊢ ( ( ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℤ ∧ ( 2 ↑ 𝐼 ) ∈ ℤ ) → ( ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ↔ ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) ) ) |
33 |
31 26 32
|
syl2anc |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ↔ ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) ) ) |
34 |
30 33
|
mpbid |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) ) |