| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 2 |  | nncn | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℂ ) | 
						
							| 3 |  | 1cnd | ⊢ ( 𝐼  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 4 | 2 3 | nncand | ⊢ ( 𝐼  ∈  ℕ  →  ( 𝐼  −  ( 𝐼  −  1 ) )  =  1 ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  ( 𝐼  −  1 ) ) )  =  ( 2 ↑ 1 ) ) | 
						
							| 6 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 8 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 10 |  | nnz | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℤ ) | 
						
							| 11 |  | peano2zm | ⊢ ( 𝐼  ∈  ℤ  →  ( 𝐼  −  1 )  ∈  ℤ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( 𝐼  −  1 )  ∈  ℤ ) | 
						
							| 13 | 7 9 12 10 | expsubd | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  ( 𝐼  −  1 ) ) )  =  ( ( 2 ↑ 𝐼 )  /  ( 2 ↑ ( 𝐼  −  1 ) ) ) ) | 
						
							| 14 |  | exp1 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 15 | 6 14 | mp1i | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 16 | 5 13 15 | 3eqtr3d | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ 𝐼 )  /  ( 2 ↑ ( 𝐼  −  1 ) ) )  =  2 ) | 
						
							| 17 | 1 16 | breqtrrid | ⊢ ( 𝐼  ∈  ℕ  →  1  <  ( ( 2 ↑ 𝐼 )  /  ( 2 ↑ ( 𝐼  −  1 ) ) ) ) | 
						
							| 18 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 19 | 18 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 20 |  | nnm1nn0 | ⊢ ( 𝐼  ∈  ℕ  →  ( 𝐼  −  1 )  ∈  ℕ0 ) | 
						
							| 21 | 19 20 | nnexpcld | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℕ ) | 
						
							| 22 | 21 | nnrpd | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℝ+ ) | 
						
							| 23 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 24 |  | nnnn0 | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℕ0 ) | 
						
							| 25 |  | zexpcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝐼  ∈  ℕ0 )  →  ( 2 ↑ 𝐼 )  ∈  ℤ ) | 
						
							| 26 | 23 24 25 | sylancr | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 𝐼 )  ∈  ℤ ) | 
						
							| 27 | 26 | zred | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 𝐼 )  ∈  ℝ ) | 
						
							| 28 |  | divgt1b | ⊢ ( ( ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℝ+  ∧  ( 2 ↑ 𝐼 )  ∈  ℝ )  →  ( ( 2 ↑ ( 𝐼  −  1 ) )  <  ( 2 ↑ 𝐼 )  ↔  1  <  ( ( 2 ↑ 𝐼 )  /  ( 2 ↑ ( 𝐼  −  1 ) ) ) ) ) | 
						
							| 29 | 22 27 28 | syl2anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ ( 𝐼  −  1 ) )  <  ( 2 ↑ 𝐼 )  ↔  1  <  ( ( 2 ↑ 𝐼 )  /  ( 2 ↑ ( 𝐼  −  1 ) ) ) ) ) | 
						
							| 30 | 17 29 | mpbird | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  1 ) )  <  ( 2 ↑ 𝐼 ) ) | 
						
							| 31 | 21 | nnzd | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℤ ) | 
						
							| 32 |  | zltlem1 | ⊢ ( ( ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℤ  ∧  ( 2 ↑ 𝐼 )  ∈  ℤ )  →  ( ( 2 ↑ ( 𝐼  −  1 ) )  <  ( 2 ↑ 𝐼 )  ↔  ( 2 ↑ ( 𝐼  −  1 ) )  ≤  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) | 
						
							| 33 | 31 26 32 | syl2anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ ( 𝐼  −  1 ) )  <  ( 2 ↑ 𝐼 )  ↔  ( 2 ↑ ( 𝐼  −  1 ) )  ≤  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) | 
						
							| 34 | 30 33 | mpbid | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  1 ) )  ≤  ( ( 2 ↑ 𝐼 )  −  1 ) ) |