Metamath Proof Explorer


Theorem pw2m1lepw2m1

Description: 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion pw2m1lepw2m1 ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) )

Proof

Step Hyp Ref Expression
1 1lt2 1 < 2
2 nncn ( 𝐼 ∈ ℕ → 𝐼 ∈ ℂ )
3 1cnd ( 𝐼 ∈ ℕ → 1 ∈ ℂ )
4 2 3 nncand ( 𝐼 ∈ ℕ → ( 𝐼 − ( 𝐼 − 1 ) ) = 1 )
5 4 oveq2d ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − ( 𝐼 − 1 ) ) ) = ( 2 ↑ 1 ) )
6 2cn 2 ∈ ℂ
7 6 a1i ( 𝐼 ∈ ℕ → 2 ∈ ℂ )
8 2ne0 2 ≠ 0
9 8 a1i ( 𝐼 ∈ ℕ → 2 ≠ 0 )
10 nnz ( 𝐼 ∈ ℕ → 𝐼 ∈ ℤ )
11 peano2zm ( 𝐼 ∈ ℤ → ( 𝐼 − 1 ) ∈ ℤ )
12 10 11 syl ( 𝐼 ∈ ℕ → ( 𝐼 − 1 ) ∈ ℤ )
13 7 9 12 10 expsubd ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − ( 𝐼 − 1 ) ) ) = ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) )
14 exp1 ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 )
15 6 14 mp1i ( 𝐼 ∈ ℕ → ( 2 ↑ 1 ) = 2 )
16 5 13 15 3eqtr3d ( 𝐼 ∈ ℕ → ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) = 2 )
17 1 16 breqtrrid ( 𝐼 ∈ ℕ → 1 < ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) )
18 2nn 2 ∈ ℕ
19 18 a1i ( 𝐼 ∈ ℕ → 2 ∈ ℕ )
20 nnm1nn0 ( 𝐼 ∈ ℕ → ( 𝐼 − 1 ) ∈ ℕ0 )
21 19 20 nnexpcld ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℕ )
22 21 nnrpd ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℝ+ )
23 2z 2 ∈ ℤ
24 nnnn0 ( 𝐼 ∈ ℕ → 𝐼 ∈ ℕ0 )
25 zexpcl ( ( 2 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → ( 2 ↑ 𝐼 ) ∈ ℤ )
26 23 24 25 sylancr ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℤ )
27 26 zred ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℝ )
28 divgt1b ( ( ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℝ+ ∧ ( 2 ↑ 𝐼 ) ∈ ℝ ) → ( ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ↔ 1 < ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) ) )
29 22 27 28 syl2anc ( 𝐼 ∈ ℕ → ( ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ↔ 1 < ( ( 2 ↑ 𝐼 ) / ( 2 ↑ ( 𝐼 − 1 ) ) ) ) )
30 17 29 mpbird ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) )
31 21 nnzd ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℤ )
32 zltlem1 ( ( ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℤ ∧ ( 2 ↑ 𝐼 ) ∈ ℤ ) → ( ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ↔ ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) ) )
33 31 26 32 syl2anc ( 𝐼 ∈ ℕ → ( ( 2 ↑ ( 𝐼 − 1 ) ) < ( 2 ↑ 𝐼 ) ↔ ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) ) )
34 30 33 mpbid ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) )