| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpcn | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℂ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 3 | 2 | mullidd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 4 | 3 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  𝐴  =  ( 1  ·  𝐴 ) ) | 
						
							| 5 | 4 | breq1d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( 1  ·  𝐴 )  <  𝐵 ) ) | 
						
							| 6 |  | 1red | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  1  ∈  ℝ ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 8 |  | rpregt0 | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 10 |  | ltmuldiv | ⊢ ( ( 1  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( 1  ·  𝐴 )  <  𝐵  ↔  1  <  ( 𝐵  /  𝐴 ) ) ) | 
						
							| 11 | 6 7 9 10 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  ( ( 1  ·  𝐴 )  <  𝐵  ↔  1  <  ( 𝐵  /  𝐴 ) ) ) | 
						
							| 12 | 5 11 | bitrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  1  <  ( 𝐵  /  𝐴 ) ) ) |