Metamath Proof Explorer


Theorem ltsubaddb

Description: Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion ltsubaddb ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴𝐶 ) < ( 𝐵𝐷 ) ↔ ( 𝐴 + 𝐷 ) < ( 𝐵 + 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℝ )
2 1 recnd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℂ )
3 simprl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℝ )
4 3 recnd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℂ )
5 simprr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℝ )
6 5 recnd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℂ )
7 2 4 6 addsubd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐵 + 𝐶 ) − 𝐷 ) = ( ( 𝐵𝐷 ) + 𝐶 ) )
8 7 eqcomd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐵𝐷 ) + 𝐶 ) = ( ( 𝐵 + 𝐶 ) − 𝐷 ) )
9 8 breq2d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 < ( ( 𝐵𝐷 ) + 𝐶 ) ↔ 𝐴 < ( ( 𝐵 + 𝐶 ) − 𝐷 ) ) )
10 simpll ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℝ )
11 resubcl ( ( 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐵𝐷 ) ∈ ℝ )
12 11 ad2ant2l ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵𝐷 ) ∈ ℝ )
13 10 3 12 ltsubaddd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴𝐶 ) < ( 𝐵𝐷 ) ↔ 𝐴 < ( ( 𝐵𝐷 ) + 𝐶 ) ) )
14 readdcl ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) ∈ ℝ )
15 14 ad2ant2lr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 + 𝐶 ) ∈ ℝ )
16 10 5 15 ltaddsubd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + 𝐷 ) < ( 𝐵 + 𝐶 ) ↔ 𝐴 < ( ( 𝐵 + 𝐶 ) − 𝐷 ) ) )
17 9 13 16 3bitr4d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴𝐶 ) < ( 𝐵𝐷 ) ↔ ( 𝐴 + 𝐷 ) < ( 𝐵 + 𝐶 ) ) )