Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) |
2 |
1
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) |
3 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
4 |
3
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
5 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
6 |
5
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) |
7 |
2 4 6
|
addsubd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B + C ) - D ) = ( ( B - D ) + C ) ) |
8 |
7
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B - D ) + C ) = ( ( B + C ) - D ) ) |
9 |
8
|
breq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < ( ( B - D ) + C ) <-> A < ( ( B + C ) - D ) ) ) |
10 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
11 |
|
resubcl |
|- ( ( B e. RR /\ D e. RR ) -> ( B - D ) e. RR ) |
12 |
11
|
ad2ant2l |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B - D ) e. RR ) |
13 |
10 3 12
|
ltsubaddd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> A < ( ( B - D ) + C ) ) ) |
14 |
|
readdcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
15 |
14
|
ad2ant2lr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B + C ) e. RR ) |
16 |
10 5 15
|
ltaddsubd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + D ) < ( B + C ) <-> A < ( ( B + C ) - D ) ) ) |
17 |
9 13 16
|
3bitr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> ( A + D ) < ( B + C ) ) ) |