| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) | 
						
							| 3 |  | simprl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) | 
						
							| 4 | 3 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) | 
						
							| 5 |  | simprr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) | 
						
							| 7 | 2 4 6 | addsubd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B + C ) - D ) = ( ( B - D ) + C ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B - D ) + C ) = ( ( B + C ) - D ) ) | 
						
							| 9 | 8 | breq2d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < ( ( B - D ) + C ) <-> A < ( ( B + C ) - D ) ) ) | 
						
							| 10 |  | simpll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) | 
						
							| 11 |  | resubcl |  |-  ( ( B e. RR /\ D e. RR ) -> ( B - D ) e. RR ) | 
						
							| 12 | 11 | ad2ant2l |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B - D ) e. RR ) | 
						
							| 13 | 10 3 12 | ltsubaddd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> A < ( ( B - D ) + C ) ) ) | 
						
							| 14 |  | readdcl |  |-  ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) | 
						
							| 15 | 14 | ad2ant2lr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B + C ) e. RR ) | 
						
							| 16 | 10 5 15 | ltaddsubd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + D ) < ( B + C ) <-> A < ( ( B + C ) - D ) ) ) | 
						
							| 17 | 9 13 16 | 3bitr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> ( A + D ) < ( B + C ) ) ) |