| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
| 2 |
1
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
| 3 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
| 4 |
3
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC ) |
| 5 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) |
| 6 |
5
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) |
| 7 |
|
subadd23 |
|- ( ( C e. CC /\ D e. CC /\ B e. CC ) -> ( ( C - D ) + B ) = ( C + ( B - D ) ) ) |
| 8 |
7
|
eqcomd |
|- ( ( C e. CC /\ D e. CC /\ B e. CC ) -> ( C + ( B - D ) ) = ( ( C - D ) + B ) ) |
| 9 |
2 4 6 8
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + ( B - D ) ) = ( ( C - D ) + B ) ) |
| 10 |
9
|
breq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < ( C + ( B - D ) ) <-> A < ( ( C - D ) + B ) ) ) |
| 11 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
| 12 |
|
resubcl |
|- ( ( B e. RR /\ D e. RR ) -> ( B - D ) e. RR ) |
| 13 |
12
|
ad2ant2l |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B - D ) e. RR ) |
| 14 |
11 1 13
|
ltsubadd2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> A < ( C + ( B - D ) ) ) ) |
| 15 |
|
resubcl |
|- ( ( C e. RR /\ D e. RR ) -> ( C - D ) e. RR ) |
| 16 |
15
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C - D ) e. RR ) |
| 17 |
11 5 16
|
ltsubaddd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - B ) < ( C - D ) <-> A < ( ( C - D ) + B ) ) ) |
| 18 |
10 14 17
|
3bitr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> ( A - B ) < ( C - D ) ) ) |