Metamath Proof Explorer


Theorem ltsubsubb

Description: Equivalence for the "less than" relation between differences. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion ltsubsubb
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> ( A - B ) < ( C - D ) ) )

Proof

Step Hyp Ref Expression
1 simprl
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR )
2 1 recnd
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC )
3 simprr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR )
4 3 recnd
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. CC )
5 simplr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR )
6 5 recnd
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC )
7 subadd23
 |-  ( ( C e. CC /\ D e. CC /\ B e. CC ) -> ( ( C - D ) + B ) = ( C + ( B - D ) ) )
8 7 eqcomd
 |-  ( ( C e. CC /\ D e. CC /\ B e. CC ) -> ( C + ( B - D ) ) = ( ( C - D ) + B ) )
9 2 4 6 8 syl3anc
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + ( B - D ) ) = ( ( C - D ) + B ) )
10 9 breq2d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < ( C + ( B - D ) ) <-> A < ( ( C - D ) + B ) ) )
11 simpll
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR )
12 resubcl
 |-  ( ( B e. RR /\ D e. RR ) -> ( B - D ) e. RR )
13 12 ad2ant2l
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B - D ) e. RR )
14 11 1 13 ltsubadd2d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> A < ( C + ( B - D ) ) ) )
15 resubcl
 |-  ( ( C e. RR /\ D e. RR ) -> ( C - D ) e. RR )
16 15 adantl
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C - D ) e. RR )
17 11 5 16 ltsubaddd
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - B ) < ( C - D ) <-> A < ( ( C - D ) + B ) ) )
18 10 14 17 3bitr4d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A - C ) < ( B - D ) <-> ( A - B ) < ( C - D ) ) )