| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( ( A e. RR /\ B e. RR ) -> B e. CC ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) | 
						
							| 4 |  | simpl |  |-  ( ( C e. RR /\ D e. RR ) -> C e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ( C e. RR /\ D e. RR ) -> C e. CC ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) | 
						
							| 7 |  | simpl |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( ( A e. RR /\ B e. RR ) -> A e. CC ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. CC ) | 
						
							| 10 | 3 6 9 | addsubd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B + C ) - A ) = ( ( B - A ) + C ) ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B - A ) + C ) = ( ( B + C ) - A ) ) | 
						
							| 12 | 11 | breq2d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( D < ( ( B - A ) + C ) <-> D < ( ( B + C ) - A ) ) ) | 
						
							| 13 |  | simprr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) | 
						
							| 14 |  | simprl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) | 
						
							| 15 |  | resubcl |  |-  ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) | 
						
							| 16 | 15 | ancoms |  |-  ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B - A ) e. RR ) | 
						
							| 18 | 13 14 17 | ltsubaddd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> D < ( ( B - A ) + C ) ) ) | 
						
							| 19 | 7 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) | 
						
							| 20 |  | readdcl |  |-  ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) | 
						
							| 21 | 20 | ad2ant2lr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B + C ) e. RR ) | 
						
							| 22 | 19 13 21 | ltaddsub2d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + D ) < ( B + C ) <-> D < ( ( B + C ) - A ) ) ) | 
						
							| 23 | 12 18 22 | 3bitr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> ( A + D ) < ( B + C ) ) ) |