Metamath Proof Explorer


Theorem ltsubadd2b

Description: Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion ltsubadd2b
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> ( A + D ) < ( B + C ) ) )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( A e. RR /\ B e. RR ) -> B e. RR )
2 1 recnd
 |-  ( ( A e. RR /\ B e. RR ) -> B e. CC )
3 2 adantr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC )
4 simpl
 |-  ( ( C e. RR /\ D e. RR ) -> C e. RR )
5 4 recnd
 |-  ( ( C e. RR /\ D e. RR ) -> C e. CC )
6 5 adantl
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC )
7 simpl
 |-  ( ( A e. RR /\ B e. RR ) -> A e. RR )
8 7 recnd
 |-  ( ( A e. RR /\ B e. RR ) -> A e. CC )
9 8 adantr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. CC )
10 3 6 9 addsubd
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B + C ) - A ) = ( ( B - A ) + C ) )
11 10 eqcomd
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B - A ) + C ) = ( ( B + C ) - A ) )
12 11 breq2d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( D < ( ( B - A ) + C ) <-> D < ( ( B + C ) - A ) ) )
13 simprr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR )
14 simprl
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR )
15 resubcl
 |-  ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR )
16 15 ancoms
 |-  ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR )
17 16 adantr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B - A ) e. RR )
18 13 14 17 ltsubaddd
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> D < ( ( B - A ) + C ) ) )
19 7 adantr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR )
20 readdcl
 |-  ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR )
21 20 ad2ant2lr
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B + C ) e. RR )
22 19 13 21 ltaddsub2d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + D ) < ( B + C ) <-> D < ( ( B + C ) - A ) ) )
23 12 18 22 3bitr4d
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> ( A + D ) < ( B + C ) ) )