| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 2 |
1
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 3 |
2
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) |
| 4 |
|
simpl |
|- ( ( C e. RR /\ D e. RR ) -> C e. RR ) |
| 5 |
4
|
recnd |
|- ( ( C e. RR /\ D e. RR ) -> C e. CC ) |
| 6 |
5
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
| 7 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 9 |
8
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. CC ) |
| 10 |
3 6 9
|
addsubd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B + C ) - A ) = ( ( B - A ) + C ) ) |
| 11 |
10
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B - A ) + C ) = ( ( B + C ) - A ) ) |
| 12 |
11
|
breq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( D < ( ( B - A ) + C ) <-> D < ( ( B + C ) - A ) ) ) |
| 13 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
| 14 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
| 15 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
| 16 |
15
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 17 |
16
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B - A ) e. RR ) |
| 18 |
13 14 17
|
ltsubaddd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> D < ( ( B - A ) + C ) ) ) |
| 19 |
7
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
| 20 |
|
readdcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
| 21 |
20
|
ad2ant2lr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B + C ) e. RR ) |
| 22 |
19 13 21
|
ltaddsub2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + D ) < ( B + C ) <-> D < ( ( B + C ) - A ) ) ) |
| 23 |
12 18 22
|
3bitr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> ( A + D ) < ( B + C ) ) ) |