Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
2 |
1
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
3 |
2
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. CC ) |
4 |
|
simpl |
|- ( ( C e. RR /\ D e. RR ) -> C e. RR ) |
5 |
4
|
recnd |
|- ( ( C e. RR /\ D e. RR ) -> C e. CC ) |
6 |
5
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. CC ) |
7 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
9 |
8
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. CC ) |
10 |
3 6 9
|
addsubd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B + C ) - A ) = ( ( B - A ) + C ) ) |
11 |
10
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( B - A ) + C ) = ( ( B + C ) - A ) ) |
12 |
11
|
breq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( D < ( ( B - A ) + C ) <-> D < ( ( B + C ) - A ) ) ) |
13 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
14 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
15 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
16 |
15
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
17 |
16
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B - A ) e. RR ) |
18 |
13 14 17
|
ltsubaddd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> D < ( ( B - A ) + C ) ) ) |
19 |
7
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
20 |
|
readdcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
21 |
20
|
ad2ant2lr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B + C ) e. RR ) |
22 |
19 13 21
|
ltaddsub2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + D ) < ( B + C ) <-> D < ( ( B + C ) - A ) ) ) |
23 |
12 18 22
|
3bitr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( D - C ) < ( B - A ) <-> ( A + D ) < ( B + C ) ) ) |