Metamath Proof Explorer


Theorem ltsubadd2b

Description: Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion ltsubadd2b ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐷𝐶 ) < ( 𝐵𝐴 ) ↔ ( 𝐴 + 𝐷 ) < ( 𝐵 + 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ )
2 1 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ )
3 2 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℂ )
4 simpl ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → 𝐶 ∈ ℝ )
5 4 recnd ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → 𝐶 ∈ ℂ )
6 5 adantl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℂ )
7 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ )
8 7 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ )
9 8 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℂ )
10 3 6 9 addsubd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐵 + 𝐶 ) − 𝐴 ) = ( ( 𝐵𝐴 ) + 𝐶 ) )
11 10 eqcomd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐵𝐴 ) + 𝐶 ) = ( ( 𝐵 + 𝐶 ) − 𝐴 ) )
12 11 breq2d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐷 < ( ( 𝐵𝐴 ) + 𝐶 ) ↔ 𝐷 < ( ( 𝐵 + 𝐶 ) − 𝐴 ) ) )
13 simprr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℝ )
14 simprl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℝ )
15 resubcl ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴 ) ∈ ℝ )
16 15 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵𝐴 ) ∈ ℝ )
17 16 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵𝐴 ) ∈ ℝ )
18 13 14 17 ltsubaddd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐷𝐶 ) < ( 𝐵𝐴 ) ↔ 𝐷 < ( ( 𝐵𝐴 ) + 𝐶 ) ) )
19 7 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℝ )
20 readdcl ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) ∈ ℝ )
21 20 ad2ant2lr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 + 𝐶 ) ∈ ℝ )
22 19 13 21 ltaddsub2d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + 𝐷 ) < ( 𝐵 + 𝐶 ) ↔ 𝐷 < ( ( 𝐵 + 𝐶 ) − 𝐴 ) ) )
23 12 18 22 3bitr4d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐷𝐶 ) < ( 𝐵𝐴 ) ↔ ( 𝐴 + 𝐷 ) < ( 𝐵 + 𝐶 ) ) )