Metamath Proof Explorer


Theorem ltsubadd2b

Description: Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion ltsubadd2b A B C D D C < B A A + D < B + C

Proof

Step Hyp Ref Expression
1 simpr A B B
2 1 recnd A B B
3 2 adantr A B C D B
4 simpl C D C
5 4 recnd C D C
6 5 adantl A B C D C
7 simpl A B A
8 7 recnd A B A
9 8 adantr A B C D A
10 3 6 9 addsubd A B C D B + C - A = B - A + C
11 10 eqcomd A B C D B - A + C = B + C - A
12 11 breq2d A B C D D < B - A + C D < B + C - A
13 simprr A B C D D
14 simprl A B C D C
15 resubcl B A B A
16 15 ancoms A B B A
17 16 adantr A B C D B A
18 13 14 17 ltsubaddd A B C D D C < B A D < B - A + C
19 7 adantr A B C D A
20 readdcl B C B + C
21 20 ad2ant2lr A B C D B + C
22 19 13 21 ltaddsub2d A B C D A + D < B + C D < B + C - A
23 12 18 22 3bitr4d A B C D D C < B A A + D < B + C