Metamath Proof Explorer


Theorem ltsubadd2b

Description: Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion ltsubadd2b ABCDDC<BAA+D<B+C

Proof

Step Hyp Ref Expression
1 simpr ABB
2 1 recnd ABB
3 2 adantr ABCDB
4 simpl CDC
5 4 recnd CDC
6 5 adantl ABCDC
7 simpl ABA
8 7 recnd ABA
9 8 adantr ABCDA
10 3 6 9 addsubd ABCDB+C-A=B-A+C
11 10 eqcomd ABCDB-A+C=B+C-A
12 11 breq2d ABCDD<B-A+CD<B+C-A
13 simprr ABCDD
14 simprl ABCDC
15 resubcl BABA
16 15 ancoms ABBA
17 16 adantr ABCDBA
18 13 14 17 ltsubaddd ABCDDC<BAD<B-A+C
19 7 adantr ABCDA
20 readdcl BCB+C
21 20 ad2ant2lr ABCDB+C
22 19 13 21 ltaddsub2d ABCDA+D<B+CD<B+C-A
23 12 18 22 3bitr4d ABCDDC<BAA+D<B+C