Metamath Proof Explorer


Theorem divsub1dir

Description: Distribution of division over subtraction by 1. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion divsub1dir
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) - 1 ) = ( ( A - B ) / B ) )

Proof

Step Hyp Ref Expression
1 3simpc
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) )
2 divid
 |-  ( ( B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 )
3 1 2 syl
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 )
4 3 eqcomd
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> 1 = ( B / B ) )
5 4 oveq2d
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) - 1 ) = ( ( A / B ) - ( B / B ) ) )
6 divsubdir
 |-  ( ( A e. CC /\ B e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A - B ) / B ) = ( ( A / B ) - ( B / B ) ) )
7 1 6 syld3an3
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A - B ) / B ) = ( ( A / B ) - ( B / B ) ) )
8 5 7 eqtr4d
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) - 1 ) = ( ( A - B ) / B ) )