| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3simpc |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 2 |  | divid |  |-  ( ( B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 ) | 
						
							| 4 | 3 | eqcomd |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> 1 = ( B / B ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) - 1 ) = ( ( A / B ) - ( B / B ) ) ) | 
						
							| 6 |  | divsubdir |  |-  ( ( A e. CC /\ B e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A - B ) / B ) = ( ( A / B ) - ( B / B ) ) ) | 
						
							| 7 | 1 6 | syld3an3 |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A - B ) / B ) = ( ( A / B ) - ( B / B ) ) ) | 
						
							| 8 | 5 7 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) - 1 ) = ( ( A - B ) / B ) ) |