Step |
Hyp |
Ref |
Expression |
1 |
|
3simpc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
2 |
|
divid |
|- ( ( B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 ) |
3 |
1 2
|
syl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 ) |
4 |
3
|
eqcomd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> 1 = ( B / B ) ) |
5 |
4
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) - 1 ) = ( ( A / B ) - ( B / B ) ) ) |
6 |
|
divsubdir |
|- ( ( A e. CC /\ B e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A - B ) / B ) = ( ( A / B ) - ( B / B ) ) ) |
7 |
1 6
|
syld3an3 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A - B ) / B ) = ( ( A / B ) - ( B / B ) ) ) |
8 |
5 7
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) - 1 ) = ( ( A - B ) / B ) ) |