| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelre |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> B e. RR ) | 
						
							| 3 |  | eluz2nn |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. NN ) | 
						
							| 4 | 3 | nnne0d |  |-  ( B e. ( ZZ>= ` 2 ) -> B =/= 0 ) | 
						
							| 5 | 4 | adantr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> B =/= 0 ) | 
						
							| 6 |  | simpr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. ZZ ) | 
						
							| 7 | 2 5 6 | 3jca |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( B e. RR /\ B =/= 0 /\ N e. ZZ ) ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B e. RR /\ B =/= 0 /\ N e. ZZ ) ) | 
						
							| 9 |  | reexpclz |  |-  ( ( B e. RR /\ B =/= 0 /\ N e. ZZ ) -> ( B ^ N ) e. RR ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) e. RR ) | 
						
							| 11 |  | 0red |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 e. RR ) | 
						
							| 12 | 1 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> B e. RR ) | 
						
							| 13 | 4 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> B =/= 0 ) | 
						
							| 14 |  | simp2 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> N e. ZZ ) | 
						
							| 15 | 12 13 14 | reexpclzd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) e. RR ) | 
						
							| 16 | 3 | nngt0d |  |-  ( B e. ( ZZ>= ` 2 ) -> 0 < B ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 < B ) | 
						
							| 18 |  | expgt0 |  |-  ( ( B e. RR /\ N e. ZZ /\ 0 < B ) -> 0 < ( B ^ N ) ) | 
						
							| 19 | 12 14 17 18 | syl3anc |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 < ( B ^ N ) ) | 
						
							| 20 | 11 15 19 | ltled |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 <_ ( B ^ N ) ) | 
						
							| 21 |  | 0zd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 e. ZZ ) | 
						
							| 22 |  | eluz2gt1 |  |-  ( B e. ( ZZ>= ` 2 ) -> 1 < B ) | 
						
							| 23 | 22 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 1 < B ) | 
						
							| 24 |  | simp3 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> N < 0 ) | 
						
							| 25 |  | ltexp2a |  |-  ( ( ( B e. RR /\ N e. ZZ /\ 0 e. ZZ ) /\ ( 1 < B /\ N < 0 ) ) -> ( B ^ N ) < ( B ^ 0 ) ) | 
						
							| 26 | 12 14 21 23 24 25 | syl32anc |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) < ( B ^ 0 ) ) | 
						
							| 27 |  | eluzelcn |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. CC ) | 
						
							| 28 | 27 | exp0d |  |-  ( B e. ( ZZ>= ` 2 ) -> ( B ^ 0 ) = 1 ) | 
						
							| 29 | 28 | eqcomd |  |-  ( B e. ( ZZ>= ` 2 ) -> 1 = ( B ^ 0 ) ) | 
						
							| 30 | 29 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 1 = ( B ^ 0 ) ) | 
						
							| 31 | 26 30 | breqtrrd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) < 1 ) | 
						
							| 32 |  | 0re |  |-  0 e. RR | 
						
							| 33 |  | 1xr |  |-  1 e. RR* | 
						
							| 34 | 32 33 | pm3.2i |  |-  ( 0 e. RR /\ 1 e. RR* ) | 
						
							| 35 |  | elico2 |  |-  ( ( 0 e. RR /\ 1 e. RR* ) -> ( ( B ^ N ) e. ( 0 [,) 1 ) <-> ( ( B ^ N ) e. RR /\ 0 <_ ( B ^ N ) /\ ( B ^ N ) < 1 ) ) ) | 
						
							| 36 | 34 35 | mp1i |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( ( B ^ N ) e. ( 0 [,) 1 ) <-> ( ( B ^ N ) e. RR /\ 0 <_ ( B ^ N ) /\ ( B ^ N ) < 1 ) ) ) | 
						
							| 37 | 10 20 31 36 | mpbir3and |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) e. ( 0 [,) 1 ) ) |