| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzelre |
|- ( B e. ( ZZ>= ` 2 ) -> B e. RR ) |
| 2 |
1
|
adantr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> B e. RR ) |
| 3 |
|
eluz2nn |
|- ( B e. ( ZZ>= ` 2 ) -> B e. NN ) |
| 4 |
3
|
nnne0d |
|- ( B e. ( ZZ>= ` 2 ) -> B =/= 0 ) |
| 5 |
4
|
adantr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> B =/= 0 ) |
| 6 |
|
simpr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. ZZ ) |
| 7 |
2 5 6
|
3jca |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( B e. RR /\ B =/= 0 /\ N e. ZZ ) ) |
| 8 |
7
|
3adant3 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B e. RR /\ B =/= 0 /\ N e. ZZ ) ) |
| 9 |
|
reexpclz |
|- ( ( B e. RR /\ B =/= 0 /\ N e. ZZ ) -> ( B ^ N ) e. RR ) |
| 10 |
8 9
|
syl |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) e. RR ) |
| 11 |
|
0red |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 e. RR ) |
| 12 |
1
|
3ad2ant1 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> B e. RR ) |
| 13 |
4
|
3ad2ant1 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> B =/= 0 ) |
| 14 |
|
simp2 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> N e. ZZ ) |
| 15 |
12 13 14
|
reexpclzd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) e. RR ) |
| 16 |
3
|
nngt0d |
|- ( B e. ( ZZ>= ` 2 ) -> 0 < B ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 < B ) |
| 18 |
|
expgt0 |
|- ( ( B e. RR /\ N e. ZZ /\ 0 < B ) -> 0 < ( B ^ N ) ) |
| 19 |
12 14 17 18
|
syl3anc |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 < ( B ^ N ) ) |
| 20 |
11 15 19
|
ltled |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 <_ ( B ^ N ) ) |
| 21 |
|
0zd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 0 e. ZZ ) |
| 22 |
|
eluz2gt1 |
|- ( B e. ( ZZ>= ` 2 ) -> 1 < B ) |
| 23 |
22
|
3ad2ant1 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 1 < B ) |
| 24 |
|
simp3 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> N < 0 ) |
| 25 |
|
ltexp2a |
|- ( ( ( B e. RR /\ N e. ZZ /\ 0 e. ZZ ) /\ ( 1 < B /\ N < 0 ) ) -> ( B ^ N ) < ( B ^ 0 ) ) |
| 26 |
12 14 21 23 24 25
|
syl32anc |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) < ( B ^ 0 ) ) |
| 27 |
|
eluzelcn |
|- ( B e. ( ZZ>= ` 2 ) -> B e. CC ) |
| 28 |
27
|
exp0d |
|- ( B e. ( ZZ>= ` 2 ) -> ( B ^ 0 ) = 1 ) |
| 29 |
28
|
eqcomd |
|- ( B e. ( ZZ>= ` 2 ) -> 1 = ( B ^ 0 ) ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> 1 = ( B ^ 0 ) ) |
| 31 |
26 30
|
breqtrrd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) < 1 ) |
| 32 |
|
0re |
|- 0 e. RR |
| 33 |
|
1xr |
|- 1 e. RR* |
| 34 |
32 33
|
pm3.2i |
|- ( 0 e. RR /\ 1 e. RR* ) |
| 35 |
|
elico2 |
|- ( ( 0 e. RR /\ 1 e. RR* ) -> ( ( B ^ N ) e. ( 0 [,) 1 ) <-> ( ( B ^ N ) e. RR /\ 0 <_ ( B ^ N ) /\ ( B ^ N ) < 1 ) ) ) |
| 36 |
34 35
|
mp1i |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( ( B ^ N ) e. ( 0 [,) 1 ) <-> ( ( B ^ N ) e. RR /\ 0 <_ ( B ^ N ) /\ ( B ^ N ) < 1 ) ) ) |
| 37 |
10 20 31 36
|
mpbir3and |
|- ( ( B e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N < 0 ) -> ( B ^ N ) e. ( 0 [,) 1 ) ) |