| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelre | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | eluz2nn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℕ ) | 
						
							| 4 | 3 | nnne0d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ≠  0 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  𝐵  ≠  0 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 7 | 2 5 6 | 3jca | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 9 |  | reexpclz | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 11 |  | 0red | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  0  ∈  ℝ ) | 
						
							| 12 | 1 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  𝐵  ∈  ℝ ) | 
						
							| 13 | 4 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  𝐵  ≠  0 ) | 
						
							| 14 |  | simp2 | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  𝑁  ∈  ℤ ) | 
						
							| 15 | 12 13 14 | reexpclzd | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 16 | 3 | nngt0d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  0  <  𝐵 ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  0  <  𝐵 ) | 
						
							| 18 |  | expgt0 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑁  ∈  ℤ  ∧  0  <  𝐵 )  →  0  <  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 19 | 12 14 17 18 | syl3anc | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  0  <  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 20 | 11 15 19 | ltled | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  0  ≤  ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 21 |  | 0zd | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  0  ∈  ℤ ) | 
						
							| 22 |  | eluz2gt1 | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝐵 ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  1  <  𝐵 ) | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  𝑁  <  0 ) | 
						
							| 25 |  | ltexp2a | ⊢ ( ( ( 𝐵  ∈  ℝ  ∧  𝑁  ∈  ℤ  ∧  0  ∈  ℤ )  ∧  ( 1  <  𝐵  ∧  𝑁  <  0 ) )  →  ( 𝐵 ↑ 𝑁 )  <  ( 𝐵 ↑ 0 ) ) | 
						
							| 26 | 12 14 21 23 24 25 | syl32anc | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  ( 𝐵 ↑ 𝑁 )  <  ( 𝐵 ↑ 0 ) ) | 
						
							| 27 |  | eluzelcn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℂ ) | 
						
							| 28 | 27 | exp0d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐵 ↑ 0 )  =  1 ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  1  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  1  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 31 | 26 30 | breqtrrd | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  ( 𝐵 ↑ 𝑁 )  <  1 ) | 
						
							| 32 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 33 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 34 | 32 33 | pm3.2i | ⊢ ( 0  ∈  ℝ  ∧  1  ∈  ℝ* ) | 
						
							| 35 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ* )  →  ( ( 𝐵 ↑ 𝑁 )  ∈  ( 0 [,) 1 )  ↔  ( ( 𝐵 ↑ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( 𝐵 ↑ 𝑁 )  ∧  ( 𝐵 ↑ 𝑁 )  <  1 ) ) ) | 
						
							| 36 | 34 35 | mp1i | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  ( ( 𝐵 ↑ 𝑁 )  ∈  ( 0 [,) 1 )  ↔  ( ( 𝐵 ↑ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( 𝐵 ↑ 𝑁 )  ∧  ( 𝐵 ↑ 𝑁 )  <  1 ) ) ) | 
						
							| 37 | 10 20 31 36 | mpbir3and | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ  ∧  𝑁  <  0 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ( 0 [,) 1 ) ) |