Metamath Proof Explorer
Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 4-Jun-2014) (Revised by Mario Carneiro, 9-Sep-2014)
|
|
Ref |
Expression |
|
Assertion |
reexpclz |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
2 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
3 |
|
1re |
⊢ 1 ∈ ℝ |
4 |
|
rereccl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℝ ) |
5 |
1 2 3 4
|
expcl2lem |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |