Step |
Hyp |
Ref |
Expression |
1 |
|
expcllem.1 |
⊢ 𝐹 ⊆ ℂ |
2 |
|
expcllem.2 |
⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) |
3 |
|
expcllem.3 |
⊢ 1 ∈ 𝐹 |
4 |
|
expcl2lem.4 |
⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ 𝐹 ) |
5 |
|
elznn0nn |
⊢ ( 𝐵 ∈ ℤ ↔ ( 𝐵 ∈ ℕ0 ∨ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) ) |
6 |
1 2 3
|
expcllem |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
7 |
6
|
ex |
⊢ ( 𝐴 ∈ 𝐹 → ( 𝐵 ∈ ℕ0 → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) → ( 𝐵 ∈ ℕ0 → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
9 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐴 ∈ 𝐹 ) |
10 |
1 9
|
sselid |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) |
11 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐵 ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐵 ∈ ℂ ) |
13 |
|
nnnn0 |
⊢ ( - 𝐵 ∈ ℕ → - 𝐵 ∈ ℕ0 ) |
14 |
13
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → - 𝐵 ∈ ℕ0 ) |
15 |
|
expneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
16 |
10 12 14 15
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ 𝐵 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
17 |
|
difss |
⊢ ( 𝐹 ∖ { 0 } ) ⊆ 𝐹 |
18 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ) |
19 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( 𝐹 ∖ { 0 } ) ↔ ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ) |
20 |
18 19
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → 𝐴 ∈ ( 𝐹 ∖ { 0 } ) ) |
21 |
17 1
|
sstri |
⊢ ( 𝐹 ∖ { 0 } ) ⊆ ℂ |
22 |
17
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) → 𝑥 ∈ 𝐹 ) |
23 |
17
|
sseli |
⊢ ( 𝑦 ∈ ( 𝐹 ∖ { 0 } ) → 𝑦 ∈ 𝐹 ) |
24 |
22 23 2
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐹 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐹 ) |
25 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0 ) ) |
26 |
1
|
sseli |
⊢ ( 𝑥 ∈ 𝐹 → 𝑥 ∈ ℂ ) |
27 |
26
|
anim1i |
⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0 ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
28 |
25 27
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
29 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝐹 ∖ { 0 } ) ↔ ( 𝑦 ∈ 𝐹 ∧ 𝑦 ≠ 0 ) ) |
30 |
1
|
sseli |
⊢ ( 𝑦 ∈ 𝐹 → 𝑦 ∈ ℂ ) |
31 |
30
|
anim1i |
⊢ ( ( 𝑦 ∈ 𝐹 ∧ 𝑦 ≠ 0 ) → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
32 |
29 31
|
sylbi |
⊢ ( 𝑦 ∈ ( 𝐹 ∖ { 0 } ) → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
33 |
|
mulne0 |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
34 |
28 32 33
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐹 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
35 |
|
eldifsn |
⊢ ( ( 𝑥 · 𝑦 ) ∈ ( 𝐹 ∖ { 0 } ) ↔ ( ( 𝑥 · 𝑦 ) ∈ 𝐹 ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) |
36 |
24 34 35
|
sylanbrc |
⊢ ( ( 𝑥 ∈ ( 𝐹 ∖ { 0 } ) ∧ 𝑦 ∈ ( 𝐹 ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝐹 ∖ { 0 } ) ) |
37 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
38 |
|
eldifsn |
⊢ ( 1 ∈ ( 𝐹 ∖ { 0 } ) ↔ ( 1 ∈ 𝐹 ∧ 1 ≠ 0 ) ) |
39 |
3 37 38
|
mpbir2an |
⊢ 1 ∈ ( 𝐹 ∖ { 0 } ) |
40 |
21 36 39
|
expcllem |
⊢ ( ( 𝐴 ∈ ( 𝐹 ∖ { 0 } ) ∧ - 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝐵 ) ∈ ( 𝐹 ∖ { 0 } ) ) |
41 |
20 14 40
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝐵 ) ∈ ( 𝐹 ∖ { 0 } ) ) |
42 |
17 41
|
sselid |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝐵 ) ∈ 𝐹 ) |
43 |
|
eldifsn |
⊢ ( ( 𝐴 ↑ - 𝐵 ) ∈ ( 𝐹 ∖ { 0 } ) ↔ ( ( 𝐴 ↑ - 𝐵 ) ∈ 𝐹 ∧ ( 𝐴 ↑ - 𝐵 ) ≠ 0 ) ) |
44 |
41 43
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( ( 𝐴 ↑ - 𝐵 ) ∈ 𝐹 ∧ ( 𝐴 ↑ - 𝐵 ) ≠ 0 ) ) |
45 |
44
|
simprd |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝐵 ) ≠ 0 ) |
46 |
|
neeq1 |
⊢ ( 𝑥 = ( 𝐴 ↑ - 𝐵 ) → ( 𝑥 ≠ 0 ↔ ( 𝐴 ↑ - 𝐵 ) ≠ 0 ) ) |
47 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐴 ↑ - 𝐵 ) → ( 1 / 𝑥 ) = ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ) |
48 |
47
|
eleq1d |
⊢ ( 𝑥 = ( 𝐴 ↑ - 𝐵 ) → ( ( 1 / 𝑥 ) ∈ 𝐹 ↔ ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ 𝐹 ) ) |
49 |
46 48
|
imbi12d |
⊢ ( 𝑥 = ( 𝐴 ↑ - 𝐵 ) → ( ( 𝑥 ≠ 0 → ( 1 / 𝑥 ) ∈ 𝐹 ) ↔ ( ( 𝐴 ↑ - 𝐵 ) ≠ 0 → ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ 𝐹 ) ) ) |
50 |
4
|
ex |
⊢ ( 𝑥 ∈ 𝐹 → ( 𝑥 ≠ 0 → ( 1 / 𝑥 ) ∈ 𝐹 ) ) |
51 |
49 50
|
vtoclga |
⊢ ( ( 𝐴 ↑ - 𝐵 ) ∈ 𝐹 → ( ( 𝐴 ↑ - 𝐵 ) ≠ 0 → ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ 𝐹 ) ) |
52 |
42 45 51
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 1 / ( 𝐴 ↑ - 𝐵 ) ) ∈ 𝐹 ) |
53 |
16 52
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |
54 |
53
|
ex |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) → ( ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
55 |
8 54
|
jaod |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) → ( ( 𝐵 ∈ ℕ0 ∨ ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℕ ) ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
56 |
5 55
|
syl5bi |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ) → ( 𝐵 ∈ ℤ → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) ) |
57 |
56
|
3impia |
⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑ 𝐵 ) ∈ 𝐹 ) |