Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 4-Jun-2014) (Revised by Mario Carneiro, 9-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | reexpclz | |- ( ( A e. RR /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn | |- RR C_ CC |
|
2 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
3 | 1re | |- 1 e. RR |
|
4 | rereccl | |- ( ( x e. RR /\ x =/= 0 ) -> ( 1 / x ) e. RR ) |
|
5 | 1 2 3 4 | expcl2lem | |- ( ( A e. RR /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. RR ) |