Step |
Hyp |
Ref |
Expression |
1 |
|
ax-rrecex |
|- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |
2 |
|
eqcom |
|- ( x = ( 1 / A ) <-> ( 1 / A ) = x ) |
3 |
|
1cnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> 1 e. CC ) |
4 |
|
simpr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> x e. RR ) |
5 |
4
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> x e. CC ) |
6 |
|
simpll |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> A e. RR ) |
7 |
6
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> A e. CC ) |
8 |
|
simplr |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> A =/= 0 ) |
9 |
|
divmul |
|- ( ( 1 e. CC /\ x e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( 1 / A ) = x <-> ( A x. x ) = 1 ) ) |
10 |
3 5 7 8 9
|
syl112anc |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> ( ( 1 / A ) = x <-> ( A x. x ) = 1 ) ) |
11 |
2 10
|
syl5bb |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> ( x = ( 1 / A ) <-> ( A x. x ) = 1 ) ) |
12 |
11
|
rexbidva |
|- ( ( A e. RR /\ A =/= 0 ) -> ( E. x e. RR x = ( 1 / A ) <-> E. x e. RR ( A x. x ) = 1 ) ) |
13 |
1 12
|
mpbird |
|- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR x = ( 1 / A ) ) |
14 |
|
risset |
|- ( ( 1 / A ) e. RR <-> E. x e. RR x = ( 1 / A ) ) |
15 |
13 14
|
sylibr |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |