Metamath Proof Explorer


Theorem expnegico01

Description: An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion expnegico01 B 2 N N < 0 B N 0 1

Proof

Step Hyp Ref Expression
1 eluzelre B 2 B
2 1 adantr B 2 N B
3 eluz2nn B 2 B
4 3 nnne0d B 2 B 0
5 4 adantr B 2 N B 0
6 simpr B 2 N N
7 2 5 6 3jca B 2 N B B 0 N
8 7 3adant3 B 2 N N < 0 B B 0 N
9 reexpclz B B 0 N B N
10 8 9 syl B 2 N N < 0 B N
11 0red B 2 N N < 0 0
12 1 3ad2ant1 B 2 N N < 0 B
13 4 3ad2ant1 B 2 N N < 0 B 0
14 simp2 B 2 N N < 0 N
15 12 13 14 reexpclzd B 2 N N < 0 B N
16 3 nngt0d B 2 0 < B
17 16 3ad2ant1 B 2 N N < 0 0 < B
18 expgt0 B N 0 < B 0 < B N
19 12 14 17 18 syl3anc B 2 N N < 0 0 < B N
20 11 15 19 ltled B 2 N N < 0 0 B N
21 0zd B 2 N N < 0 0
22 eluz2gt1 B 2 1 < B
23 22 3ad2ant1 B 2 N N < 0 1 < B
24 simp3 B 2 N N < 0 N < 0
25 ltexp2a B N 0 1 < B N < 0 B N < B 0
26 12 14 21 23 24 25 syl32anc B 2 N N < 0 B N < B 0
27 eluzelcn B 2 B
28 27 exp0d B 2 B 0 = 1
29 28 eqcomd B 2 1 = B 0
30 29 3ad2ant1 B 2 N N < 0 1 = B 0
31 26 30 breqtrrd B 2 N N < 0 B N < 1
32 0re 0
33 1xr 1 *
34 32 33 pm3.2i 0 1 *
35 elico2 0 1 * B N 0 1 B N 0 B N B N < 1
36 34 35 mp1i B 2 N N < 0 B N 0 1 B N 0 B N B N < 1
37 10 20 31 36 mpbir3and B 2 N N < 0 B N 0 1