Metamath Proof Explorer


Theorem elfzolborelfzop1

Description: An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020)

Ref Expression
Assertion elfzolborelfzop1 K M ..^ N K = M K M + 1 ..^ N

Proof

Step Hyp Ref Expression
1 elfzo2 K M ..^ N K M N K < N
2 eluz2 K M M K M K
3 zre M M
4 zre K K
5 leloe M K M K M < K M = K
6 3 4 5 syl2an M K M K M < K M = K
7 peano2z M M + 1
8 7 adantr M K M + 1
9 8 ad2antrl M < K M K N M + 1
10 simprlr M < K M K N K
11 simpl M < K M K N M < K
12 zltp1le M K M < K M + 1 K
13 12 ad2antrl M < K M K N M < K M + 1 K
14 11 13 mpbid M < K M K N M + 1 K
15 9 10 14 3jca M < K M K N M + 1 K M + 1 K
16 15 adantr M < K M K N K < N M + 1 K M + 1 K
17 simplrr M < K M K N K < N N
18 simpr M < K M K N K < N K < N
19 elfzo2 K M + 1 ..^ N K M + 1 N K < N
20 eluz2 K M + 1 M + 1 K M + 1 K
21 20 3anbi1i K M + 1 N K < N M + 1 K M + 1 K N K < N
22 19 21 bitri K M + 1 ..^ N M + 1 K M + 1 K N K < N
23 16 17 18 22 syl3anbrc M < K M K N K < N K M + 1 ..^ N
24 23 olcd M < K M K N K < N K = M K M + 1 ..^ N
25 24 exp31 M < K M K N K < N K = M K M + 1 ..^ N
26 orc K = M K = M K M + 1 ..^ N
27 26 eqcoms M = K K = M K M + 1 ..^ N
28 27 2a1d M = K M K N K < N K = M K M + 1 ..^ N
29 25 28 jaoi M < K M = K M K N K < N K = M K M + 1 ..^ N
30 29 expd M < K M = K M K N K < N K = M K M + 1 ..^ N
31 30 com12 M K M < K M = K N K < N K = M K M + 1 ..^ N
32 6 31 sylbid M K M K N K < N K = M K M + 1 ..^ N
33 32 3impia M K M K N K < N K = M K M + 1 ..^ N
34 2 33 sylbi K M N K < N K = M K M + 1 ..^ N
35 34 3imp K M N K < N K = M K M + 1 ..^ N
36 1 35 sylbi K M ..^ N K = M K M + 1 ..^ N