Metamath Proof Explorer


Theorem expgt0

Description: A positive real raised to an integer power is positive. (Contributed by NM, 16-Dec-2005) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expgt0 AN0<A0<AN

Proof

Step Hyp Ref Expression
1 elrp A+A0<A
2 rpexpcl A+NAN+
3 2 rpgt0d A+N0<AN
4 1 3 sylanbr A0<AN0<AN
5 4 3impa A0<AN0<AN
6 5 3com23 AN0<A0<AN