Metamath Proof Explorer


Theorem subadd23

Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007)

Ref Expression
Assertion subadd23
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) )

Proof

Step Hyp Ref Expression
1 addsub
 |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( ( A - B ) + C ) )
2 addsubass
 |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( A + ( C - B ) ) )
3 1 2 eqtr3d
 |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) )
4 3 3com23
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) )