Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | subadd23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsub | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( ( A - B ) + C ) ) |
|
2 | addsubass | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( A + ( C - B ) ) ) |
|
3 | 1 2 | eqtr3d | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) ) |
4 | 3 | 3com23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) ) |