| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( ( 𝐴 − 1 ) < 𝐼 ∧ 𝐼 ≤ 𝐴 ) ) → 𝐼 ≤ 𝐴 ) |
| 2 |
|
zlem1lt |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐼 ∈ ℤ ) → ( 𝐴 ≤ 𝐼 ↔ ( 𝐴 − 1 ) < 𝐼 ) ) |
| 3 |
2
|
ancoms |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ≤ 𝐼 ↔ ( 𝐴 − 1 ) < 𝐼 ) ) |
| 4 |
3
|
biimprcd |
⊢ ( ( 𝐴 − 1 ) < 𝐼 → ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → 𝐴 ≤ 𝐼 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝐴 − 1 ) < 𝐼 ∧ 𝐼 ≤ 𝐴 ) → ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → 𝐴 ≤ 𝐼 ) ) |
| 6 |
5
|
impcom |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( ( 𝐴 − 1 ) < 𝐼 ∧ 𝐼 ≤ 𝐴 ) ) → 𝐴 ≤ 𝐼 ) |
| 7 |
|
zre |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) |
| 8 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 9 |
|
letri3 |
⊢ ( ( 𝐼 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐼 = 𝐴 ↔ ( 𝐼 ≤ 𝐴 ∧ 𝐴 ≤ 𝐼 ) ) ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐼 = 𝐴 ↔ ( 𝐼 ≤ 𝐴 ∧ 𝐴 ≤ 𝐼 ) ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( ( 𝐴 − 1 ) < 𝐼 ∧ 𝐼 ≤ 𝐴 ) ) → ( 𝐼 = 𝐴 ↔ ( 𝐼 ≤ 𝐴 ∧ 𝐴 ≤ 𝐼 ) ) ) |
| 12 |
1 6 11
|
mpbir2and |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( ( 𝐴 − 1 ) < 𝐼 ∧ 𝐼 ≤ 𝐴 ) ) → 𝐼 = 𝐴 ) |
| 13 |
12
|
ex |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( ( 𝐴 − 1 ) < 𝐼 ∧ 𝐼 ≤ 𝐴 ) → 𝐼 = 𝐴 ) ) |