| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprr | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( ( 𝐴  −  1 )  <  𝐼  ∧  𝐼  ≤  𝐴 ) )  →  𝐼  ≤  𝐴 ) | 
						
							| 2 |  | zlem1lt | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐼  ∈  ℤ )  →  ( 𝐴  ≤  𝐼  ↔  ( 𝐴  −  1 )  <  𝐼 ) ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝐴  ≤  𝐼  ↔  ( 𝐴  −  1 )  <  𝐼 ) ) | 
						
							| 4 | 3 | biimprcd | ⊢ ( ( 𝐴  −  1 )  <  𝐼  →  ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  𝐴  ≤  𝐼 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐴  −  1 )  <  𝐼  ∧  𝐼  ≤  𝐴 )  →  ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  𝐴  ≤  𝐼 ) ) | 
						
							| 6 | 5 | impcom | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( ( 𝐴  −  1 )  <  𝐼  ∧  𝐼  ≤  𝐴 ) )  →  𝐴  ≤  𝐼 ) | 
						
							| 7 |  | zre | ⊢ ( 𝐼  ∈  ℤ  →  𝐼  ∈  ℝ ) | 
						
							| 8 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 9 |  | letri3 | ⊢ ( ( 𝐼  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐼  =  𝐴  ↔  ( 𝐼  ≤  𝐴  ∧  𝐴  ≤  𝐼 ) ) ) | 
						
							| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝐼  =  𝐴  ↔  ( 𝐼  ≤  𝐴  ∧  𝐴  ≤  𝐼 ) ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( ( 𝐴  −  1 )  <  𝐼  ∧  𝐼  ≤  𝐴 ) )  →  ( 𝐼  =  𝐴  ↔  ( 𝐼  ≤  𝐴  ∧  𝐴  ≤  𝐼 ) ) ) | 
						
							| 12 | 1 6 11 | mpbir2and | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( ( 𝐴  −  1 )  <  𝐼  ∧  𝐼  ≤  𝐴 ) )  →  𝐼  =  𝐴 ) | 
						
							| 13 | 12 | ex | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( ( ( 𝐴  −  1 )  <  𝐼  ∧  𝐼  ≤  𝐴 )  →  𝐼  =  𝐴 ) ) |