| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 2 | 1 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℝ+ ) | 
						
							| 3 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 5 |  | nnnn0 | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℕ0 ) | 
						
							| 6 | 4 5 | nn0expcld | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 𝐼 )  ∈  ℕ0 ) | 
						
							| 7 |  | nnge1 | ⊢ ( 𝐼  ∈  ℕ  →  1  ≤  𝐼 ) | 
						
							| 8 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 10 |  | 1zzd | ⊢ ( 𝐼  ∈  ℕ  →  1  ∈  ℤ ) | 
						
							| 11 |  | nnz | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℤ ) | 
						
							| 12 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  1  <  2 ) | 
						
							| 14 | 9 10 11 13 | leexp2d | ⊢ ( 𝐼  ∈  ℕ  →  ( 1  ≤  𝐼  ↔  ( 2 ↑ 1 )  ≤  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 15 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 16 |  | exp1 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( 2 ↑ 1 )  =  2 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 19 | 18 | breq1d | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ 1 )  ≤  ( 2 ↑ 𝐼 )  ↔  2  ≤  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 20 | 14 19 | bitrd | ⊢ ( 𝐼  ∈  ℕ  →  ( 1  ≤  𝐼  ↔  2  ≤  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 21 | 7 20 | mpbid | ⊢ ( 𝐼  ∈  ℕ  →  2  ≤  ( 2 ↑ 𝐼 ) ) | 
						
							| 22 |  | nn0ge2m1nn | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℕ0  ∧  2  ≤  ( 2 ↑ 𝐼 ) )  →  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℕ ) | 
						
							| 23 | 6 21 22 | syl2anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℕ ) | 
						
							| 24 | 23 | nnrpd | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℝ+ ) | 
						
							| 25 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 26 | 25 | necomi | ⊢ 2  ≠  1 | 
						
							| 27 | 26 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ≠  1 ) | 
						
							| 28 |  | relogbcl | ⊢ ( ( 2  ∈  ℝ+  ∧  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℝ+  ∧  2  ≠  1 )  →  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  ∈  ℝ ) | 
						
							| 29 | 2 24 27 28 | syl3anc | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  ∈  ℝ ) | 
						
							| 30 | 29 | flcld | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ∈  ℤ ) | 
						
							| 31 |  | peano2zm | ⊢ ( 𝐼  ∈  ℤ  →  ( 𝐼  −  1 )  ∈  ℤ ) | 
						
							| 32 | 11 31 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( 𝐼  −  1 )  ∈  ℤ ) | 
						
							| 33 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 34 |  | uzid | ⊢ ( 2  ∈  ℤ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 35 | 33 34 | ax-mp | ⊢ 2  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 36 |  | nnlogbexp | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝐼  −  1 )  ∈  ℤ )  →  ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  =  ( 𝐼  −  1 ) ) | 
						
							| 37 | 35 32 36 | sylancr | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  =  ( 𝐼  −  1 ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) ) )  =  ( ⌊ ‘ ( 𝐼  −  1 ) ) ) | 
						
							| 39 |  | flid | ⊢ ( ( 𝐼  −  1 )  ∈  ℤ  →  ( ⌊ ‘ ( 𝐼  −  1 ) )  =  ( 𝐼  −  1 ) ) | 
						
							| 40 | 32 39 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 𝐼  −  1 ) )  =  ( 𝐼  −  1 ) ) | 
						
							| 41 | 38 40 | eqtrd | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) ) )  =  ( 𝐼  −  1 ) ) | 
						
							| 42 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 43 | 42 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 44 |  | nnm1nn0 | ⊢ ( 𝐼  ∈  ℕ  →  ( 𝐼  −  1 )  ∈  ℕ0 ) | 
						
							| 45 | 43 44 | nnexpcld | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℕ ) | 
						
							| 46 | 45 | nnrpd | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℝ+ ) | 
						
							| 47 |  | relogbcl | ⊢ ( ( 2  ∈  ℝ+  ∧  ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℝ+  ∧  2  ≠  1 )  →  ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  ∈  ℝ ) | 
						
							| 48 | 2 46 27 47 | syl3anc | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  ∈  ℝ ) | 
						
							| 49 |  | pw2m1lepw2m1 | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ ( 𝐼  −  1 ) )  ≤  ( ( 2 ↑ 𝐼 )  −  1 ) ) | 
						
							| 50 | 35 | a1i | ⊢ ( 𝐼  ∈  ℕ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 51 |  | logbleb | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 2 ↑ ( 𝐼  −  1 ) )  ∈  ℝ+  ∧  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℝ+ )  →  ( ( 2 ↑ ( 𝐼  −  1 ) )  ≤  ( ( 2 ↑ 𝐼 )  −  1 )  ↔  ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  ≤  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) ) | 
						
							| 52 | 50 46 24 51 | syl3anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ ( 𝐼  −  1 ) )  ≤  ( ( 2 ↑ 𝐼 )  −  1 )  ↔  ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  ≤  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) ) | 
						
							| 53 | 49 52 | mpbid | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  ≤  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) | 
						
							| 54 |  | flwordi | ⊢ ( ( ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  ∈  ℝ  ∧  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  ∈  ℝ  ∧  ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) )  ≤  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  →  ( ⌊ ‘ ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) ) )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) ) | 
						
							| 55 | 48 29 53 54 | syl3anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( 2 ↑ ( 𝐼  −  1 ) ) ) )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) ) | 
						
							| 56 | 41 55 | eqbrtrrd | ⊢ ( 𝐼  ∈  ℕ  →  ( 𝐼  −  1 )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) ) | 
						
							| 57 | 43 5 | nnexpcld | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 𝐼 )  ∈  ℕ ) | 
						
							| 58 | 57 | nnnn0d | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 𝐼 )  ∈  ℕ0 ) | 
						
							| 59 | 58 21 22 | syl2anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℕ ) | 
						
							| 60 | 59 | nnrpd | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℝ+ ) | 
						
							| 61 | 2 60 27 28 | syl3anc | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  ∈  ℝ ) | 
						
							| 62 | 61 | flcld | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ∈  ℤ ) | 
						
							| 63 | 62 | zred | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ∈  ℝ ) | 
						
							| 64 |  | nnre | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℝ ) | 
						
							| 65 |  | peano2rem | ⊢ ( 𝐼  ∈  ℝ  →  ( 𝐼  −  1 )  ∈  ℝ ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( 𝐼  −  1 )  ∈  ℝ ) | 
						
							| 67 |  | peano2re | ⊢ ( ( 𝐼  −  1 )  ∈  ℝ  →  ( ( 𝐼  −  1 )  +  1 )  ∈  ℝ ) | 
						
							| 68 | 66 67 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 𝐼  −  1 )  +  1 )  ∈  ℝ ) | 
						
							| 69 |  | flle | ⊢ ( ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  ∈  ℝ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ≤  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) | 
						
							| 70 | 29 69 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ≤  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) ) | 
						
							| 71 | 57 | nnrpd | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 𝐼 )  ∈  ℝ+ ) | 
						
							| 72 |  | relogbcl | ⊢ ( ( 2  ∈  ℝ+  ∧  ( 2 ↑ 𝐼 )  ∈  ℝ+  ∧  2  ≠  1 )  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  ∈  ℝ ) | 
						
							| 73 | 2 71 27 72 | syl3anc | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  ∈  ℝ ) | 
						
							| 74 | 57 | nnred | ⊢ ( 𝐼  ∈  ℕ  →  ( 2 ↑ 𝐼 )  ∈  ℝ ) | 
						
							| 75 | 74 | ltm1d | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 2 ↑ 𝐼 )  −  1 )  <  ( 2 ↑ 𝐼 ) ) | 
						
							| 76 |  | logblt | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 2 ↑ 𝐼 )  −  1 )  ∈  ℝ+  ∧  ( 2 ↑ 𝐼 )  ∈  ℝ+ )  →  ( ( ( 2 ↑ 𝐼 )  −  1 )  <  ( 2 ↑ 𝐼 )  ↔  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  <  ( 2  logb  ( 2 ↑ 𝐼 ) ) ) ) | 
						
							| 77 | 50 24 71 76 | syl3anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ( ( 2 ↑ 𝐼 )  −  1 )  <  ( 2 ↑ 𝐼 )  ↔  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  <  ( 2  logb  ( 2 ↑ 𝐼 ) ) ) ) | 
						
							| 78 | 75 77 | mpbid | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  <  ( 2  logb  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 79 | 64 | leidd | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ≤  𝐼 ) | 
						
							| 80 |  | nnlogbexp | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℤ )  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  =  𝐼 ) | 
						
							| 81 | 35 11 80 | sylancr | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  =  𝐼 ) | 
						
							| 82 |  | nncn | ⊢ ( 𝐼  ∈  ℕ  →  𝐼  ∈  ℂ ) | 
						
							| 83 |  | npcan1 | ⊢ ( 𝐼  ∈  ℂ  →  ( ( 𝐼  −  1 )  +  1 )  =  𝐼 ) | 
						
							| 84 | 82 83 | syl | ⊢ ( 𝐼  ∈  ℕ  →  ( ( 𝐼  −  1 )  +  1 )  =  𝐼 ) | 
						
							| 85 | 79 81 84 | 3brtr4d | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  ≤  ( ( 𝐼  −  1 )  +  1 ) ) | 
						
							| 86 | 29 73 68 78 85 | ltletrd | ⊢ ( 𝐼  ∈  ℕ  →  ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) )  <  ( ( 𝐼  −  1 )  +  1 ) ) | 
						
							| 87 | 63 29 68 70 86 | lelttrd | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  <  ( ( 𝐼  −  1 )  +  1 ) ) | 
						
							| 88 |  | zgeltp1eq | ⊢ ( ( ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ∈  ℤ  ∧  ( 𝐼  −  1 )  ∈  ℤ )  →  ( ( ( 𝐼  −  1 )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ∧  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  <  ( ( 𝐼  −  1 )  +  1 ) )  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  =  ( 𝐼  −  1 ) ) ) | 
						
							| 89 | 88 | imp | ⊢ ( ( ( ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ∈  ℤ  ∧  ( 𝐼  −  1 )  ∈  ℤ )  ∧  ( ( 𝐼  −  1 )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  ∧  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  <  ( ( 𝐼  −  1 )  +  1 ) ) )  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  =  ( 𝐼  −  1 ) ) | 
						
							| 90 | 30 32 56 87 89 | syl22anc | ⊢ ( 𝐼  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ 𝐼 )  −  1 ) ) )  =  ( 𝐼  −  1 ) ) |