Step |
Hyp |
Ref |
Expression |
1 |
|
2rp |
⊢ 2 ∈ ℝ+ |
2 |
1
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℝ+ ) |
3 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
4 |
3
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℕ0 ) |
5 |
|
nnnn0 |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℕ0 ) |
6 |
4 5
|
nn0expcld |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℕ0 ) |
7 |
|
nnge1 |
⊢ ( 𝐼 ∈ ℕ → 1 ≤ 𝐼 ) |
8 |
|
2re |
⊢ 2 ∈ ℝ |
9 |
8
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℝ ) |
10 |
|
1zzd |
⊢ ( 𝐼 ∈ ℕ → 1 ∈ ℤ ) |
11 |
|
nnz |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℤ ) |
12 |
|
1lt2 |
⊢ 1 < 2 |
13 |
12
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 1 < 2 ) |
14 |
9 10 11 13
|
leexp2d |
⊢ ( 𝐼 ∈ ℕ → ( 1 ≤ 𝐼 ↔ ( 2 ↑ 1 ) ≤ ( 2 ↑ 𝐼 ) ) ) |
15 |
|
2cn |
⊢ 2 ∈ ℂ |
16 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
17 |
15 16
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
18 |
17
|
a1i |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 1 ) = 2 ) |
19 |
18
|
breq1d |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ 1 ) ≤ ( 2 ↑ 𝐼 ) ↔ 2 ≤ ( 2 ↑ 𝐼 ) ) ) |
20 |
14 19
|
bitrd |
⊢ ( 𝐼 ∈ ℕ → ( 1 ≤ 𝐼 ↔ 2 ≤ ( 2 ↑ 𝐼 ) ) ) |
21 |
7 20
|
mpbid |
⊢ ( 𝐼 ∈ ℕ → 2 ≤ ( 2 ↑ 𝐼 ) ) |
22 |
|
nn0ge2m1nn |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℕ0 ∧ 2 ≤ ( 2 ↑ 𝐼 ) ) → ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℕ ) |
23 |
6 21 22
|
syl2anc |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℕ ) |
24 |
23
|
nnrpd |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℝ+ ) |
25 |
|
1ne2 |
⊢ 1 ≠ 2 |
26 |
25
|
necomi |
⊢ 2 ≠ 1 |
27 |
26
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ≠ 1 ) |
28 |
|
relogbcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℝ+ ∧ 2 ≠ 1 ) → ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ∈ ℝ ) |
29 |
2 24 27 28
|
syl3anc |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ∈ ℝ ) |
30 |
29
|
flcld |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ∈ ℤ ) |
31 |
|
peano2zm |
⊢ ( 𝐼 ∈ ℤ → ( 𝐼 − 1 ) ∈ ℤ ) |
32 |
11 31
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( 𝐼 − 1 ) ∈ ℤ ) |
33 |
|
2z |
⊢ 2 ∈ ℤ |
34 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
35 |
33 34
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
36 |
|
nnlogbexp |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐼 − 1 ) ∈ ℤ ) → ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) = ( 𝐼 − 1 ) ) |
37 |
35 32 36
|
sylancr |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) = ( 𝐼 − 1 ) ) |
38 |
37
|
fveq2d |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ) = ( ⌊ ‘ ( 𝐼 − 1 ) ) ) |
39 |
|
flid |
⊢ ( ( 𝐼 − 1 ) ∈ ℤ → ( ⌊ ‘ ( 𝐼 − 1 ) ) = ( 𝐼 − 1 ) ) |
40 |
32 39
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 𝐼 − 1 ) ) = ( 𝐼 − 1 ) ) |
41 |
38 40
|
eqtrd |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ) = ( 𝐼 − 1 ) ) |
42 |
|
2nn |
⊢ 2 ∈ ℕ |
43 |
42
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ℕ ) |
44 |
|
nnm1nn0 |
⊢ ( 𝐼 ∈ ℕ → ( 𝐼 − 1 ) ∈ ℕ0 ) |
45 |
43 44
|
nnexpcld |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℕ ) |
46 |
45
|
nnrpd |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℝ+ ) |
47 |
|
relogbcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℝ+ ∧ 2 ≠ 1 ) → ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
48 |
2 46 27 47
|
syl3anc |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
49 |
|
pw2m1lepw2m1 |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) ) |
50 |
35
|
a1i |
⊢ ( 𝐼 ∈ ℕ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
51 |
|
logbleb |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 2 ↑ ( 𝐼 − 1 ) ) ∈ ℝ+ ∧ ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℝ+ ) → ( ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) ↔ ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ≤ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ) |
52 |
50 46 24 51
|
syl3anc |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ ( 𝐼 − 1 ) ) ≤ ( ( 2 ↑ 𝐼 ) − 1 ) ↔ ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ≤ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ) |
53 |
49 52
|
mpbid |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ≤ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) |
54 |
|
flwordi |
⊢ ( ( ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ∈ ℝ ∧ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ∈ ℝ ∧ ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ≤ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) → ( ⌊ ‘ ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ) |
55 |
48 29 53 54
|
syl3anc |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( 2 ↑ ( 𝐼 − 1 ) ) ) ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ) |
56 |
41 55
|
eqbrtrrd |
⊢ ( 𝐼 ∈ ℕ → ( 𝐼 − 1 ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ) |
57 |
43 5
|
nnexpcld |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℕ ) |
58 |
57
|
nnnn0d |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℕ0 ) |
59 |
58 21 22
|
syl2anc |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℕ ) |
60 |
59
|
nnrpd |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℝ+ ) |
61 |
2 60 27 28
|
syl3anc |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ∈ ℝ ) |
62 |
61
|
flcld |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ∈ ℤ ) |
63 |
62
|
zred |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ∈ ℝ ) |
64 |
|
nnre |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℝ ) |
65 |
|
peano2rem |
⊢ ( 𝐼 ∈ ℝ → ( 𝐼 − 1 ) ∈ ℝ ) |
66 |
64 65
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( 𝐼 − 1 ) ∈ ℝ ) |
67 |
|
peano2re |
⊢ ( ( 𝐼 − 1 ) ∈ ℝ → ( ( 𝐼 − 1 ) + 1 ) ∈ ℝ ) |
68 |
66 67
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( ( 𝐼 − 1 ) + 1 ) ∈ ℝ ) |
69 |
|
flle |
⊢ ( ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ∈ ℝ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ≤ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) |
70 |
29 69
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ≤ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) |
71 |
57
|
nnrpd |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℝ+ ) |
72 |
|
relogbcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( 2 ↑ 𝐼 ) ∈ ℝ+ ∧ 2 ≠ 1 ) → ( 2 logb ( 2 ↑ 𝐼 ) ) ∈ ℝ ) |
73 |
2 71 27 72
|
syl3anc |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( 2 ↑ 𝐼 ) ) ∈ ℝ ) |
74 |
57
|
nnred |
⊢ ( 𝐼 ∈ ℕ → ( 2 ↑ 𝐼 ) ∈ ℝ ) |
75 |
74
|
ltm1d |
⊢ ( 𝐼 ∈ ℕ → ( ( 2 ↑ 𝐼 ) − 1 ) < ( 2 ↑ 𝐼 ) ) |
76 |
|
logblt |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 2 ↑ 𝐼 ) − 1 ) ∈ ℝ+ ∧ ( 2 ↑ 𝐼 ) ∈ ℝ+ ) → ( ( ( 2 ↑ 𝐼 ) − 1 ) < ( 2 ↑ 𝐼 ) ↔ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) < ( 2 logb ( 2 ↑ 𝐼 ) ) ) ) |
77 |
50 24 71 76
|
syl3anc |
⊢ ( 𝐼 ∈ ℕ → ( ( ( 2 ↑ 𝐼 ) − 1 ) < ( 2 ↑ 𝐼 ) ↔ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) < ( 2 logb ( 2 ↑ 𝐼 ) ) ) ) |
78 |
75 77
|
mpbid |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) < ( 2 logb ( 2 ↑ 𝐼 ) ) ) |
79 |
64
|
leidd |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ≤ 𝐼 ) |
80 |
|
nnlogbexp |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐼 ∈ ℤ ) → ( 2 logb ( 2 ↑ 𝐼 ) ) = 𝐼 ) |
81 |
35 11 80
|
sylancr |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( 2 ↑ 𝐼 ) ) = 𝐼 ) |
82 |
|
nncn |
⊢ ( 𝐼 ∈ ℕ → 𝐼 ∈ ℂ ) |
83 |
|
npcan1 |
⊢ ( 𝐼 ∈ ℂ → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
84 |
82 83
|
syl |
⊢ ( 𝐼 ∈ ℕ → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
85 |
79 81 84
|
3brtr4d |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( 2 ↑ 𝐼 ) ) ≤ ( ( 𝐼 − 1 ) + 1 ) ) |
86 |
29 73 68 78 85
|
ltletrd |
⊢ ( 𝐼 ∈ ℕ → ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) < ( ( 𝐼 − 1 ) + 1 ) ) |
87 |
63 29 68 70 86
|
lelttrd |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) < ( ( 𝐼 − 1 ) + 1 ) ) |
88 |
|
zgeltp1eq |
⊢ ( ( ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ∈ ℤ ∧ ( 𝐼 − 1 ) ∈ ℤ ) → ( ( ( 𝐼 − 1 ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ∧ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) < ( ( 𝐼 − 1 ) + 1 ) ) → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) = ( 𝐼 − 1 ) ) ) |
89 |
88
|
imp |
⊢ ( ( ( ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ∈ ℤ ∧ ( 𝐼 − 1 ) ∈ ℤ ) ∧ ( ( 𝐼 − 1 ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) ∧ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) < ( ( 𝐼 − 1 ) + 1 ) ) ) → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) = ( 𝐼 − 1 ) ) |
90 |
30 32 56 87 89
|
syl22anc |
⊢ ( 𝐼 ∈ ℕ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ 𝐼 ) − 1 ) ) ) = ( 𝐼 − 1 ) ) |