| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 2 |
1
|
flcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 3 |
2
|
zred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 5 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 6 |
1 5
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 8 |
3 1 4 6 7
|
letrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ) |
| 9 |
|
flge |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ↔ ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) ) |
| 10 |
4 2 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐵 ↔ ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) ) |
| 11 |
8 10
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐴 ) ≤ ( ⌊ ‘ 𝐵 ) ) |