Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 𝐼 ∈ ℤ ) |
3 |
|
2rp |
⊢ 2 ∈ ℝ+ |
4 |
|
elfzoelz |
⊢ ( 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) → 𝑁 ∈ ℤ ) |
5 |
4
|
zred |
⊢ ( 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) → 𝑁 ∈ ℝ ) |
6 |
5
|
adantl |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 𝑁 ∈ ℝ ) |
7 |
|
elfzo2 |
⊢ ( 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ∧ 𝑁 < ( 2 ↑ ( 𝐼 + 1 ) ) ) ) |
8 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ↔ ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 2 ↑ 𝐼 ) ≤ 𝑁 ) ) |
9 |
|
2re |
⊢ 2 ∈ ℝ |
10 |
|
2pos |
⊢ 0 < 2 |
11 |
10
|
a1i |
⊢ ( 𝐼 ∈ ℕ0 → 0 < 2 ) |
12 |
|
expgt0 |
⊢ ( ( 2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2 ) → 0 < ( 2 ↑ 𝐼 ) ) |
13 |
9 1 11 12
|
mp3an2i |
⊢ ( 𝐼 ∈ ℕ0 → 0 < ( 2 ↑ 𝐼 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 0 < ( 2 ↑ 𝐼 ) ) |
15 |
|
0red |
⊢ ( ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 0 ∈ ℝ ) |
16 |
|
zre |
⊢ ( ( 2 ↑ 𝐼 ) ∈ ℤ → ( 2 ↑ 𝐼 ) ∈ ℝ ) |
17 |
16
|
adantr |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ↑ 𝐼 ) ∈ ℝ ) |
18 |
17
|
adantr |
⊢ ( ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 2 ↑ 𝐼 ) ∈ ℝ ) |
19 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
20 |
19
|
ad2antlr |
⊢ ( ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
21 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ ( 2 ↑ 𝐼 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 < ( 2 ↑ 𝐼 ) ∧ ( 2 ↑ 𝐼 ) ≤ 𝑁 ) → 0 < 𝑁 ) ) |
22 |
15 18 20 21
|
syl3anc |
⊢ ( ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 0 < ( 2 ↑ 𝐼 ) ∧ ( 2 ↑ 𝐼 ) ≤ 𝑁 ) → 0 < 𝑁 ) ) |
23 |
14 22
|
mpand |
⊢ ( ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 2 ↑ 𝐼 ) ≤ 𝑁 → 0 < 𝑁 ) ) |
24 |
23
|
ex |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐼 ∈ ℕ0 → ( ( 2 ↑ 𝐼 ) ≤ 𝑁 → 0 < 𝑁 ) ) ) |
25 |
24
|
com23 |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 2 ↑ 𝐼 ) ≤ 𝑁 → ( 𝐼 ∈ ℕ0 → 0 < 𝑁 ) ) ) |
26 |
25
|
3impia |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 2 ↑ 𝐼 ) ≤ 𝑁 ) → ( 𝐼 ∈ ℕ0 → 0 < 𝑁 ) ) |
27 |
8 26
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) → ( 𝐼 ∈ ℕ0 → 0 < 𝑁 ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ∧ 𝑁 < ( 2 ↑ ( 𝐼 + 1 ) ) ) → ( 𝐼 ∈ ℕ0 → 0 < 𝑁 ) ) |
29 |
7 28
|
sylbi |
⊢ ( 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) → ( 𝐼 ∈ ℕ0 → 0 < 𝑁 ) ) |
30 |
29
|
impcom |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 0 < 𝑁 ) |
31 |
6 30
|
elrpd |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 𝑁 ∈ ℝ+ ) |
32 |
|
1ne2 |
⊢ 1 ≠ 2 |
33 |
32
|
necomi |
⊢ 2 ≠ 1 |
34 |
33
|
a1i |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 2 ≠ 1 ) |
35 |
|
relogbcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1 ) → ( 2 logb 𝑁 ) ∈ ℝ ) |
36 |
3 31 34 35
|
mp3an2i |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( 2 logb 𝑁 ) ∈ ℝ ) |
37 |
36
|
flcld |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℤ ) |
38 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) → 𝑁 ∈ ℤ ) |
39 |
|
zltlem1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) → ( 𝑁 < ( 2 ↑ ( 𝐼 + 1 ) ) ↔ 𝑁 ≤ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) |
40 |
38 39
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) → ( 𝑁 < ( 2 ↑ ( 𝐼 + 1 ) ) ↔ 𝑁 ≤ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) |
41 |
|
2z |
⊢ 2 ∈ ℤ |
42 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
43 |
41 42
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
44 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) → 𝑁 ∈ ℝ ) |
45 |
44
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
46 |
9
|
a1i |
⊢ ( 𝐼 ∈ ℕ0 → 2 ∈ ℝ ) |
47 |
46 1 11
|
3jca |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2 ) ) |
48 |
47
|
3ad2ant3 |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → ( 2 ∈ ℝ ∧ 𝐼 ∈ ℤ ∧ 0 < 2 ) ) |
49 |
48 12
|
syl |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → 0 < ( 2 ↑ 𝐼 ) ) |
50 |
|
0red |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → 0 ∈ ℝ ) |
51 |
16
|
3ad2ant1 |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → ( 2 ↑ 𝐼 ) ∈ ℝ ) |
52 |
19
|
3ad2ant2 |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
53 |
50 51 52 21
|
syl3anc |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → ( ( 0 < ( 2 ↑ 𝐼 ) ∧ ( 2 ↑ 𝐼 ) ≤ 𝑁 ) → 0 < 𝑁 ) ) |
54 |
49 53
|
mpand |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0 ) → ( ( 2 ↑ 𝐼 ) ≤ 𝑁 → 0 < 𝑁 ) ) |
55 |
54
|
3exp |
⊢ ( ( 2 ↑ 𝐼 ) ∈ ℤ → ( 𝑁 ∈ ℤ → ( 𝐼 ∈ ℕ0 → ( ( 2 ↑ 𝐼 ) ≤ 𝑁 → 0 < 𝑁 ) ) ) ) |
56 |
55
|
com34 |
⊢ ( ( 2 ↑ 𝐼 ) ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 2 ↑ 𝐼 ) ≤ 𝑁 → ( 𝐼 ∈ ℕ0 → 0 < 𝑁 ) ) ) ) |
57 |
56
|
3imp |
⊢ ( ( ( 2 ↑ 𝐼 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 2 ↑ 𝐼 ) ≤ 𝑁 ) → ( 𝐼 ∈ ℕ0 → 0 < 𝑁 ) ) |
58 |
8 57
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) → ( 𝐼 ∈ ℕ0 → 0 < 𝑁 ) ) |
59 |
58
|
imp |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ 𝐼 ∈ ℕ0 ) → 0 < 𝑁 ) |
60 |
45 59
|
elrpd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ+ ) |
61 |
60
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ+ ) |
62 |
9
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 2 ∈ ℝ ) |
63 |
|
peano2nn0 |
⊢ ( 𝐼 ∈ ℕ0 → ( 𝐼 + 1 ) ∈ ℕ0 ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 1 ) ∈ ℕ0 ) |
65 |
62 64
|
reexpcld |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℝ ) |
66 |
|
peano2rem |
⊢ ( ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℝ → ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ ) |
67 |
65 66
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ ) |
68 |
|
nn0p1nn |
⊢ ( 𝐼 ∈ ℕ0 → ( 𝐼 + 1 ) ∈ ℕ ) |
69 |
|
1lt2 |
⊢ 1 < 2 |
70 |
69
|
a1i |
⊢ ( 𝐼 ∈ ℕ0 → 1 < 2 ) |
71 |
46 68 70
|
3jca |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ∈ ℝ ∧ ( 𝐼 + 1 ) ∈ ℕ ∧ 1 < 2 ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 2 ∈ ℝ ∧ ( 𝐼 + 1 ) ∈ ℕ ∧ 1 < 2 ) ) |
73 |
|
expgt1 |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝐼 + 1 ) ∈ ℕ ∧ 1 < 2 ) → 1 < ( 2 ↑ ( 𝐼 + 1 ) ) ) |
74 |
72 73
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 1 < ( 2 ↑ ( 𝐼 + 1 ) ) ) |
75 |
|
1red |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 1 ∈ ℝ ) |
76 |
|
zre |
⊢ ( ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ → ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℝ ) |
77 |
76
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℝ ) |
78 |
75 77
|
posdifd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 1 < ( 2 ↑ ( 𝐼 + 1 ) ) ↔ 0 < ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) |
79 |
74 78
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 0 < ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) |
80 |
67 79
|
elrpd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ+ ) |
81 |
|
logbleb |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℝ+ ∧ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ+ ) → ( 𝑁 ≤ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ↔ ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) ) |
82 |
43 61 80 81
|
mp3an2i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑁 ≤ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ↔ ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) ) |
83 |
44
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) → 𝑁 ∈ ℝ ) |
84 |
83
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
85 |
59
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 0 < 𝑁 ) |
86 |
84 85
|
elrpd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ+ ) |
87 |
33
|
a1i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → 2 ≠ 1 ) |
88 |
3 86 87 35
|
mp3an2i |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 2 logb 𝑁 ) ∈ ℝ ) |
89 |
88
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) ∧ ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) → ( 2 logb 𝑁 ) ∈ ℝ ) |
90 |
43
|
a1i |
⊢ ( 𝐼 ∈ ℕ0 → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
91 |
46 63
|
reexpcld |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℝ ) |
92 |
91 66
|
syl |
⊢ ( 𝐼 ∈ ℕ0 → ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ ) |
93 |
9 68 70 73
|
mp3an2i |
⊢ ( 𝐼 ∈ ℕ0 → 1 < ( 2 ↑ ( 𝐼 + 1 ) ) ) |
94 |
|
1red |
⊢ ( 𝐼 ∈ ℕ0 → 1 ∈ ℝ ) |
95 |
94 91
|
posdifd |
⊢ ( 𝐼 ∈ ℕ0 → ( 1 < ( 2 ↑ ( 𝐼 + 1 ) ) ↔ 0 < ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) |
96 |
93 95
|
mpbid |
⊢ ( 𝐼 ∈ ℕ0 → 0 < ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) |
97 |
92 96
|
elrpd |
⊢ ( 𝐼 ∈ ℕ0 → ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ+ ) |
98 |
90 97
|
jca |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ+ ) ) |
99 |
98
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ+ ) ) |
100 |
|
relogbzcl |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ∈ ℝ+ ) → ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ∈ ℝ ) |
101 |
99 100
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ∈ ℝ ) |
102 |
101
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) ∧ ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) → ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ∈ ℝ ) |
103 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) ∧ ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) → ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) |
104 |
|
flwordi |
⊢ ( ( ( 2 logb 𝑁 ) ∈ ℝ ∧ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ∈ ℝ ∧ ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) ) |
105 |
89 102 103 104
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) ∧ ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) ) |
106 |
105
|
ex |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) ) ) |
107 |
68
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 1 ) ∈ ℕ ) |
108 |
|
logbpw2m1 |
⊢ ( ( 𝐼 + 1 ) ∈ ℕ → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) = ( ( 𝐼 + 1 ) − 1 ) ) |
109 |
107 108
|
syl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) = ( ( 𝐼 + 1 ) − 1 ) ) |
110 |
|
nn0cn |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℂ ) |
111 |
|
pncan1 |
⊢ ( 𝐼 ∈ ℂ → ( ( 𝐼 + 1 ) − 1 ) = 𝐼 ) |
112 |
110 111
|
syl |
⊢ ( 𝐼 ∈ ℕ0 → ( ( 𝐼 + 1 ) − 1 ) = 𝐼 ) |
113 |
112
|
adantl |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝐼 + 1 ) − 1 ) = 𝐼 ) |
114 |
109 113
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ⌊ ‘ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) = 𝐼 ) |
115 |
114
|
breq2d |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ ( ⌊ ‘ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) ) ↔ ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) ) |
116 |
106 115
|
sylibd |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 2 logb 𝑁 ) ≤ ( 2 logb ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) ) |
117 |
82 116
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑁 ≤ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) ) |
118 |
117
|
ex |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) → ( 𝐼 ∈ ℕ0 → ( 𝑁 ≤ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) ) ) |
119 |
118
|
com23 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) → ( 𝑁 ≤ ( ( 2 ↑ ( 𝐼 + 1 ) ) − 1 ) → ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) ) ) |
120 |
40 119
|
sylbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ) → ( 𝑁 < ( 2 ↑ ( 𝐼 + 1 ) ) → ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) ) ) |
121 |
120
|
3impia |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) ) ∧ ( 2 ↑ ( 𝐼 + 1 ) ) ∈ ℤ ∧ 𝑁 < ( 2 ↑ ( 𝐼 + 1 ) ) ) → ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) ) |
122 |
7 121
|
sylbi |
⊢ ( 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) → ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) ) |
123 |
122
|
impcom |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ) |
124 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
125 |
|
nn0ge0 |
⊢ ( 𝐼 ∈ ℕ0 → 0 ≤ 𝐼 ) |
126 |
|
flge0nn0 |
⊢ ( ( 𝐼 ∈ ℝ ∧ 0 ≤ 𝐼 ) → ( ⌊ ‘ 𝐼 ) ∈ ℕ0 ) |
127 |
124 125 126
|
syl2anc |
⊢ ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ 𝐼 ) ∈ ℕ0 ) |
128 |
127
|
nn0red |
⊢ ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ 𝐼 ) ∈ ℝ ) |
129 |
128
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( ⌊ ‘ 𝐼 ) ∈ ℝ ) |
130 |
124
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 𝐼 ∈ ℝ ) |
131 |
|
flle |
⊢ ( 𝐼 ∈ ℝ → ( ⌊ ‘ 𝐼 ) ≤ 𝐼 ) |
132 |
124 131
|
syl |
⊢ ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ 𝐼 ) ≤ 𝐼 ) |
133 |
132
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( ⌊ ‘ 𝐼 ) ≤ 𝐼 ) |
134 |
3
|
a1i |
⊢ ( 𝐼 ∈ ℕ0 → 2 ∈ ℝ+ ) |
135 |
134 1
|
rpexpcld |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ↑ 𝐼 ) ∈ ℝ+ ) |
136 |
33
|
a1i |
⊢ ( 𝐼 ∈ ℕ0 → 2 ≠ 1 ) |
137 |
|
relogbcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( 2 ↑ 𝐼 ) ∈ ℝ+ ∧ 2 ≠ 1 ) → ( 2 logb ( 2 ↑ 𝐼 ) ) ∈ ℝ ) |
138 |
3 135 136 137
|
mp3an2i |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 logb ( 2 ↑ 𝐼 ) ) ∈ ℝ ) |
139 |
138
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( 2 logb ( 2 ↑ 𝐼 ) ) ∈ ℝ ) |
140 |
|
nnlogbexp |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐼 ∈ ℤ ) → ( 2 logb ( 2 ↑ 𝐼 ) ) = 𝐼 ) |
141 |
90 1 140
|
syl2anc |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 logb ( 2 ↑ 𝐼 ) ) = 𝐼 ) |
142 |
141
|
eqcomd |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 = ( 2 logb ( 2 ↑ 𝐼 ) ) ) |
143 |
124 142
|
eqled |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ≤ ( 2 logb ( 2 ↑ 𝐼 ) ) ) |
144 |
143
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 𝐼 ≤ ( 2 logb ( 2 ↑ 𝐼 ) ) ) |
145 |
|
elfzole1 |
⊢ ( 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) → ( 2 ↑ 𝐼 ) ≤ 𝑁 ) |
146 |
145
|
adantl |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( 2 ↑ 𝐼 ) ≤ 𝑁 ) |
147 |
135
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( 2 ↑ 𝐼 ) ∈ ℝ+ ) |
148 |
|
logbleb |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 2 ↑ 𝐼 ) ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( ( 2 ↑ 𝐼 ) ≤ 𝑁 ↔ ( 2 logb ( 2 ↑ 𝐼 ) ) ≤ ( 2 logb 𝑁 ) ) ) |
149 |
43 147 31 148
|
mp3an2i |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( ( 2 ↑ 𝐼 ) ≤ 𝑁 ↔ ( 2 logb ( 2 ↑ 𝐼 ) ) ≤ ( 2 logb 𝑁 ) ) ) |
150 |
146 149
|
mpbid |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( 2 logb ( 2 ↑ 𝐼 ) ) ≤ ( 2 logb 𝑁 ) ) |
151 |
130 139 36 144 150
|
letrd |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 𝐼 ≤ ( 2 logb 𝑁 ) ) |
152 |
129 130 36 133 151
|
letrd |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( ⌊ ‘ 𝐼 ) ≤ ( 2 logb 𝑁 ) ) |
153 |
|
flflp1 |
⊢ ( ( 𝐼 ∈ ℝ ∧ ( 2 logb 𝑁 ) ∈ ℝ ) → ( ( ⌊ ‘ 𝐼 ) ≤ ( 2 logb 𝑁 ) ↔ 𝐼 < ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) |
154 |
130 36 153
|
syl2anc |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( ( ⌊ ‘ 𝐼 ) ≤ ( 2 logb 𝑁 ) ↔ 𝐼 < ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) |
155 |
152 154
|
mpbid |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 𝐼 < ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |
156 |
|
zgeltp1eq |
⊢ ( ( 𝐼 ∈ ℤ ∧ ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℤ ) → ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ∧ 𝐼 < ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) → 𝐼 = ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) ) |
157 |
156
|
imp |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℤ ) ∧ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) ≤ 𝐼 ∧ 𝐼 < ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) ) → 𝐼 = ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) |
158 |
2 37 123 155 157
|
syl22anc |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → 𝐼 = ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) |
159 |
158
|
eqcomd |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼 + 1 ) ) ) ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) = 𝐼 ) |