| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℤ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  𝐼  ∈  ℤ ) | 
						
							| 3 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 4 |  | elfzoelz | ⊢ ( 𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 5 | 4 | zred | ⊢ ( 𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 7 |  | elfzo2 | ⊢ ( 𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) )  ↔  ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ  ∧  𝑁  <  ( 2 ↑ ( 𝐼  +  1 ) ) ) ) | 
						
							| 8 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ↔  ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ( 2 ↑ 𝐼 )  ≤  𝑁 ) ) | 
						
							| 9 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 10 |  | 2pos | ⊢ 0  <  2 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐼  ∈  ℕ0  →  0  <  2 ) | 
						
							| 12 |  | expgt0 | ⊢ ( ( 2  ∈  ℝ  ∧  𝐼  ∈  ℤ  ∧  0  <  2 )  →  0  <  ( 2 ↑ 𝐼 ) ) | 
						
							| 13 | 9 1 11 12 | mp3an2i | ⊢ ( 𝐼  ∈  ℕ0  →  0  <  ( 2 ↑ 𝐼 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  0  <  ( 2 ↑ 𝐼 ) ) | 
						
							| 15 |  | 0red | ⊢ ( ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  0  ∈  ℝ ) | 
						
							| 16 |  | zre | ⊢ ( ( 2 ↑ 𝐼 )  ∈  ℤ  →  ( 2 ↑ 𝐼 )  ∈  ℝ ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 2 ↑ 𝐼 )  ∈  ℝ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 2 ↑ 𝐼 )  ∈  ℝ ) | 
						
							| 19 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 20 | 19 | ad2antlr | ⊢ ( ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 21 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  ( 2 ↑ 𝐼 )  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 0  <  ( 2 ↑ 𝐼 )  ∧  ( 2 ↑ 𝐼 )  ≤  𝑁 )  →  0  <  𝑁 ) ) | 
						
							| 22 | 15 18 20 21 | syl3anc | ⊢ ( ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 0  <  ( 2 ↑ 𝐼 )  ∧  ( 2 ↑ 𝐼 )  ≤  𝑁 )  →  0  <  𝑁 ) ) | 
						
							| 23 | 14 22 | mpand | ⊢ ( ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 2 ↑ 𝐼 )  ≤  𝑁  →  0  <  𝑁 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐼  ∈  ℕ0  →  ( ( 2 ↑ 𝐼 )  ≤  𝑁  →  0  <  𝑁 ) ) ) | 
						
							| 25 | 24 | com23 | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 2 ↑ 𝐼 )  ≤  𝑁  →  ( 𝐼  ∈  ℕ0  →  0  <  𝑁 ) ) ) | 
						
							| 26 | 25 | 3impia | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ( 2 ↑ 𝐼 )  ≤  𝑁 )  →  ( 𝐼  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 27 | 8 26 | sylbi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  →  ( 𝐼  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ  ∧  𝑁  <  ( 2 ↑ ( 𝐼  +  1 ) ) )  →  ( 𝐼  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 29 | 7 28 | sylbi | ⊢ ( 𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) )  →  ( 𝐼  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 30 | 29 | impcom | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  0  <  𝑁 ) | 
						
							| 31 | 6 30 | elrpd | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  𝑁  ∈  ℝ+ ) | 
						
							| 32 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 33 | 32 | necomi | ⊢ 2  ≠  1 | 
						
							| 34 | 33 | a1i | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  2  ≠  1 ) | 
						
							| 35 |  | relogbcl | ⊢ ( ( 2  ∈  ℝ+  ∧  𝑁  ∈  ℝ+  ∧  2  ≠  1 )  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 36 | 3 31 34 35 | mp3an2i | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 37 | 36 | flcld | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℤ ) | 
						
							| 38 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 39 |  | zltlem1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  →  ( 𝑁  <  ( 2 ↑ ( 𝐼  +  1 ) )  ↔  𝑁  ≤  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) | 
						
							| 40 | 38 39 | sylan | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  →  ( 𝑁  <  ( 2 ↑ ( 𝐼  +  1 ) )  ↔  𝑁  ≤  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) | 
						
							| 41 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 42 |  | uzid | ⊢ ( 2  ∈  ℤ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ 2  ∈  ( ℤ≥ ‘ 2 ) | 
						
							| 44 |  | eluzelre | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  𝐼  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 46 | 9 | a1i | ⊢ ( 𝐼  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 47 | 46 1 11 | 3jca | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2  ∈  ℝ  ∧  𝐼  ∈  ℤ  ∧  0  <  2 ) ) | 
						
							| 48 | 47 | 3ad2ant3 | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐼  ∈  ℕ0 )  →  ( 2  ∈  ℝ  ∧  𝐼  ∈  ℤ  ∧  0  <  2 ) ) | 
						
							| 49 | 48 12 | syl | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐼  ∈  ℕ0 )  →  0  <  ( 2 ↑ 𝐼 ) ) | 
						
							| 50 |  | 0red | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐼  ∈  ℕ0 )  →  0  ∈  ℝ ) | 
						
							| 51 | 16 | 3ad2ant1 | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐼  ∈  ℕ0 )  →  ( 2 ↑ 𝐼 )  ∈  ℝ ) | 
						
							| 52 | 19 | 3ad2ant2 | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐼  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 53 | 50 51 52 21 | syl3anc | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐼  ∈  ℕ0 )  →  ( ( 0  <  ( 2 ↑ 𝐼 )  ∧  ( 2 ↑ 𝐼 )  ≤  𝑁 )  →  0  <  𝑁 ) ) | 
						
							| 54 | 49 53 | mpand | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝐼  ∈  ℕ0 )  →  ( ( 2 ↑ 𝐼 )  ≤  𝑁  →  0  <  𝑁 ) ) | 
						
							| 55 | 54 | 3exp | ⊢ ( ( 2 ↑ 𝐼 )  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( 𝐼  ∈  ℕ0  →  ( ( 2 ↑ 𝐼 )  ≤  𝑁  →  0  <  𝑁 ) ) ) ) | 
						
							| 56 | 55 | com34 | ⊢ ( ( 2 ↑ 𝐼 )  ∈  ℤ  →  ( 𝑁  ∈  ℤ  →  ( ( 2 ↑ 𝐼 )  ≤  𝑁  →  ( 𝐼  ∈  ℕ0  →  0  <  𝑁 ) ) ) ) | 
						
							| 57 | 56 | 3imp | ⊢ ( ( ( 2 ↑ 𝐼 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ( 2 ↑ 𝐼 )  ≤  𝑁 )  →  ( 𝐼  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 58 | 8 57 | sylbi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  →  ( 𝐼  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 59 | 58 | imp | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  𝐼  ∈  ℕ0 )  →  0  <  𝑁 ) | 
						
							| 60 | 45 59 | elrpd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  𝐼  ∈  ℕ0 )  →  𝑁  ∈  ℝ+ ) | 
						
							| 61 | 60 | adantlr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  𝑁  ∈  ℝ+ ) | 
						
							| 62 | 9 | a1i | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  2  ∈  ℝ ) | 
						
							| 63 |  | peano2nn0 | ⊢ ( 𝐼  ∈  ℕ0  →  ( 𝐼  +  1 )  ∈  ℕ0 ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐼  +  1 )  ∈  ℕ0 ) | 
						
							| 65 | 62 64 | reexpcld | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℝ ) | 
						
							| 66 |  | peano2rem | ⊢ ( ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℝ  →  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ ) | 
						
							| 68 |  | nn0p1nn | ⊢ ( 𝐼  ∈  ℕ0  →  ( 𝐼  +  1 )  ∈  ℕ ) | 
						
							| 69 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 70 | 69 | a1i | ⊢ ( 𝐼  ∈  ℕ0  →  1  <  2 ) | 
						
							| 71 | 46 68 70 | 3jca | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2  ∈  ℝ  ∧  ( 𝐼  +  1 )  ∈  ℕ  ∧  1  <  2 ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 2  ∈  ℝ  ∧  ( 𝐼  +  1 )  ∈  ℕ  ∧  1  <  2 ) ) | 
						
							| 73 |  | expgt1 | ⊢ ( ( 2  ∈  ℝ  ∧  ( 𝐼  +  1 )  ∈  ℕ  ∧  1  <  2 )  →  1  <  ( 2 ↑ ( 𝐼  +  1 ) ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  1  <  ( 2 ↑ ( 𝐼  +  1 ) ) ) | 
						
							| 75 |  | 1red | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  1  ∈  ℝ ) | 
						
							| 76 |  | zre | ⊢ ( ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ  →  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℝ ) | 
						
							| 77 | 76 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℝ ) | 
						
							| 78 | 75 77 | posdifd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 1  <  ( 2 ↑ ( 𝐼  +  1 ) )  ↔  0  <  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) | 
						
							| 79 | 74 78 | mpbid | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  0  <  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) | 
						
							| 80 | 67 79 | elrpd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ+ ) | 
						
							| 81 |  | logbleb | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℝ+  ∧  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ+ )  →  ( 𝑁  ≤  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ↔  ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) ) | 
						
							| 82 | 43 61 80 81 | mp3an2i | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 𝑁  ≤  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ↔  ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) ) | 
						
							| 83 | 44 | adantr | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  →  𝑁  ∈  ℝ ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 85 | 59 | adantlr | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  0  <  𝑁 ) | 
						
							| 86 | 84 85 | elrpd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  𝑁  ∈  ℝ+ ) | 
						
							| 87 | 33 | a1i | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  2  ≠  1 ) | 
						
							| 88 | 3 86 87 35 | mp3an2i | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  ∧  ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 90 | 43 | a1i | ⊢ ( 𝐼  ∈  ℕ0  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 91 | 46 63 | reexpcld | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℝ ) | 
						
							| 92 | 91 66 | syl | ⊢ ( 𝐼  ∈  ℕ0  →  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ ) | 
						
							| 93 | 9 68 70 73 | mp3an2i | ⊢ ( 𝐼  ∈  ℕ0  →  1  <  ( 2 ↑ ( 𝐼  +  1 ) ) ) | 
						
							| 94 |  | 1red | ⊢ ( 𝐼  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 95 | 94 91 | posdifd | ⊢ ( 𝐼  ∈  ℕ0  →  ( 1  <  ( 2 ↑ ( 𝐼  +  1 ) )  ↔  0  <  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) | 
						
							| 96 | 93 95 | mpbid | ⊢ ( 𝐼  ∈  ℕ0  →  0  <  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) | 
						
							| 97 | 92 96 | elrpd | ⊢ ( 𝐼  ∈  ℕ0  →  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ+ ) | 
						
							| 98 | 90 97 | jca | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ+ ) ) | 
						
							| 99 | 98 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ+ ) ) | 
						
							| 100 |  | relogbzcl | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  ∈  ℝ+ )  →  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) )  ∈  ℝ ) | 
						
							| 101 | 99 100 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) )  ∈  ℝ ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  ∧  ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  →  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) )  ∈  ℝ ) | 
						
							| 103 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  ∧  ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  →  ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) | 
						
							| 104 |  | flwordi | ⊢ ( ( ( 2  logb  𝑁 )  ∈  ℝ  ∧  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) )  ∈  ℝ  ∧  ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) ) | 
						
							| 105 | 89 102 103 104 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  ∧  ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) ) | 
						
							| 106 | 105 | ex | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) ) ) ) | 
						
							| 107 | 68 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 𝐼  +  1 )  ∈  ℕ ) | 
						
							| 108 |  | logbpw2m1 | ⊢ ( ( 𝐼  +  1 )  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  =  ( ( 𝐼  +  1 )  −  1 ) ) | 
						
							| 109 | 107 108 | syl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  =  ( ( 𝐼  +  1 )  −  1 ) ) | 
						
							| 110 |  | nn0cn | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℂ ) | 
						
							| 111 |  | pncan1 | ⊢ ( 𝐼  ∈  ℂ  →  ( ( 𝐼  +  1 )  −  1 )  =  𝐼 ) | 
						
							| 112 | 110 111 | syl | ⊢ ( 𝐼  ∈  ℕ0  →  ( ( 𝐼  +  1 )  −  1 )  =  𝐼 ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 𝐼  +  1 )  −  1 )  =  𝐼 ) | 
						
							| 114 | 109 113 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  =  𝐼 ) | 
						
							| 115 | 114 | breq2d | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  ( ⌊ ‘ ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) ) )  ↔  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) ) | 
						
							| 116 | 106 115 | sylibd | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( ( 2  logb  𝑁 )  ≤  ( 2  logb  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 ) )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) ) | 
						
							| 117 | 82 116 | sylbid | ⊢ ( ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  ∧  𝐼  ∈  ℕ0 )  →  ( 𝑁  ≤  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) ) | 
						
							| 118 | 117 | ex | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  →  ( 𝐼  ∈  ℕ0  →  ( 𝑁  ≤  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) ) ) | 
						
							| 119 | 118 | com23 | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  →  ( 𝑁  ≤  ( ( 2 ↑ ( 𝐼  +  1 ) )  −  1 )  →  ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) ) ) | 
						
							| 120 | 40 119 | sylbid | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ )  →  ( 𝑁  <  ( 2 ↑ ( 𝐼  +  1 ) )  →  ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) ) ) | 
						
							| 121 | 120 | 3impia | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ ( 2 ↑ 𝐼 ) )  ∧  ( 2 ↑ ( 𝐼  +  1 ) )  ∈  ℤ  ∧  𝑁  <  ( 2 ↑ ( 𝐼  +  1 ) ) )  →  ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) ) | 
						
							| 122 | 7 121 | sylbi | ⊢ ( 𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) )  →  ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) ) | 
						
							| 123 | 122 | impcom | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼 ) | 
						
							| 124 |  | nn0re | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℝ ) | 
						
							| 125 |  | nn0ge0 | ⊢ ( 𝐼  ∈  ℕ0  →  0  ≤  𝐼 ) | 
						
							| 126 |  | flge0nn0 | ⊢ ( ( 𝐼  ∈  ℝ  ∧  0  ≤  𝐼 )  →  ( ⌊ ‘ 𝐼 )  ∈  ℕ0 ) | 
						
							| 127 | 124 125 126 | syl2anc | ⊢ ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ 𝐼 )  ∈  ℕ0 ) | 
						
							| 128 | 127 | nn0red | ⊢ ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ 𝐼 )  ∈  ℝ ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( ⌊ ‘ 𝐼 )  ∈  ℝ ) | 
						
							| 130 | 124 | adantr | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  𝐼  ∈  ℝ ) | 
						
							| 131 |  | flle | ⊢ ( 𝐼  ∈  ℝ  →  ( ⌊ ‘ 𝐼 )  ≤  𝐼 ) | 
						
							| 132 | 124 131 | syl | ⊢ ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ 𝐼 )  ≤  𝐼 ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( ⌊ ‘ 𝐼 )  ≤  𝐼 ) | 
						
							| 134 | 3 | a1i | ⊢ ( 𝐼  ∈  ℕ0  →  2  ∈  ℝ+ ) | 
						
							| 135 | 134 1 | rpexpcld | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2 ↑ 𝐼 )  ∈  ℝ+ ) | 
						
							| 136 | 33 | a1i | ⊢ ( 𝐼  ∈  ℕ0  →  2  ≠  1 ) | 
						
							| 137 |  | relogbcl | ⊢ ( ( 2  ∈  ℝ+  ∧  ( 2 ↑ 𝐼 )  ∈  ℝ+  ∧  2  ≠  1 )  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  ∈  ℝ ) | 
						
							| 138 | 3 135 136 137 | mp3an2i | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  ∈  ℝ ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  ∈  ℝ ) | 
						
							| 140 |  | nnlogbexp | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℤ )  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  =  𝐼 ) | 
						
							| 141 | 90 1 140 | syl2anc | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  =  𝐼 ) | 
						
							| 142 | 141 | eqcomd | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  =  ( 2  logb  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 143 | 124 142 | eqled | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ≤  ( 2  logb  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  𝐼  ≤  ( 2  logb  ( 2 ↑ 𝐼 ) ) ) | 
						
							| 145 |  | elfzole1 | ⊢ ( 𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) )  →  ( 2 ↑ 𝐼 )  ≤  𝑁 ) | 
						
							| 146 | 145 | adantl | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( 2 ↑ 𝐼 )  ≤  𝑁 ) | 
						
							| 147 | 135 | adantr | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( 2 ↑ 𝐼 )  ∈  ℝ+ ) | 
						
							| 148 |  | logbleb | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 2 ↑ 𝐼 )  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  →  ( ( 2 ↑ 𝐼 )  ≤  𝑁  ↔  ( 2  logb  ( 2 ↑ 𝐼 ) )  ≤  ( 2  logb  𝑁 ) ) ) | 
						
							| 149 | 43 147 31 148 | mp3an2i | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( ( 2 ↑ 𝐼 )  ≤  𝑁  ↔  ( 2  logb  ( 2 ↑ 𝐼 ) )  ≤  ( 2  logb  𝑁 ) ) ) | 
						
							| 150 | 146 149 | mpbid | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 151 | 130 139 36 144 150 | letrd | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  𝐼  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 152 | 129 130 36 133 151 | letrd | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( ⌊ ‘ 𝐼 )  ≤  ( 2  logb  𝑁 ) ) | 
						
							| 153 |  | flflp1 | ⊢ ( ( 𝐼  ∈  ℝ  ∧  ( 2  logb  𝑁 )  ∈  ℝ )  →  ( ( ⌊ ‘ 𝐼 )  ≤  ( 2  logb  𝑁 )  ↔  𝐼  <  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) ) | 
						
							| 154 | 130 36 153 | syl2anc | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( ( ⌊ ‘ 𝐼 )  ≤  ( 2  logb  𝑁 )  ↔  𝐼  <  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) ) | 
						
							| 155 | 152 154 | mpbid | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  𝐼  <  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) | 
						
							| 156 |  | zgeltp1eq | ⊢ ( ( 𝐼  ∈  ℤ  ∧  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℤ )  →  ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼  ∧  𝐼  <  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) )  →  𝐼  =  ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) ) | 
						
							| 157 | 156 | imp | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℤ )  ∧  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  ≤  𝐼  ∧  𝐼  <  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) )  →  𝐼  =  ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) | 
						
							| 158 | 2 37 123 155 157 | syl22anc | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  𝐼  =  ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) | 
						
							| 159 | 158 | eqcomd | ⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝑁  ∈  ( ( 2 ↑ 𝐼 ) ..^ ( 2 ↑ ( 𝐼  +  1 ) ) ) )  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  =  𝐼 ) |