Metamath Proof Explorer


Theorem zgeltp1eq

Description: If an integer is between another integer and its successor, the integer is equal to the other integer. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion zgeltp1eq ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴𝐼𝐼 < ( 𝐴 + 1 ) ) → 𝐼 = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simprr ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴𝐼𝐼 < ( 𝐴 + 1 ) ) ) → 𝐼 < ( 𝐴 + 1 ) )
2 zleltp1 ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐼𝐴𝐼 < ( 𝐴 + 1 ) ) )
3 2 adantr ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴𝐼𝐼 < ( 𝐴 + 1 ) ) ) → ( 𝐼𝐴𝐼 < ( 𝐴 + 1 ) ) )
4 1 3 mpbird ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴𝐼𝐼 < ( 𝐴 + 1 ) ) ) → 𝐼𝐴 )
5 simprl ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴𝐼𝐼 < ( 𝐴 + 1 ) ) ) → 𝐴𝐼 )
6 zre ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ )
7 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
8 letri3 ( ( 𝐼 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐼 = 𝐴 ↔ ( 𝐼𝐴𝐴𝐼 ) ) )
9 6 7 8 syl2an ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐼 = 𝐴 ↔ ( 𝐼𝐴𝐴𝐼 ) ) )
10 9 adantr ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴𝐼𝐼 < ( 𝐴 + 1 ) ) ) → ( 𝐼 = 𝐴 ↔ ( 𝐼𝐴𝐴𝐼 ) ) )
11 4 5 10 mpbir2and ( ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴𝐼𝐼 < ( 𝐴 + 1 ) ) ) → 𝐼 = 𝐴 )
12 11 ex ( ( 𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴𝐼𝐼 < ( 𝐴 + 1 ) ) → 𝐼 = 𝐴 ) )