| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprr | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  ≤  𝐼  ∧  𝐼  <  ( 𝐴  +  1 ) ) )  →  𝐼  <  ( 𝐴  +  1 ) ) | 
						
							| 2 |  | zleltp1 | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝐼  ≤  𝐴  ↔  𝐼  <  ( 𝐴  +  1 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  ≤  𝐼  ∧  𝐼  <  ( 𝐴  +  1 ) ) )  →  ( 𝐼  ≤  𝐴  ↔  𝐼  <  ( 𝐴  +  1 ) ) ) | 
						
							| 4 | 1 3 | mpbird | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  ≤  𝐼  ∧  𝐼  <  ( 𝐴  +  1 ) ) )  →  𝐼  ≤  𝐴 ) | 
						
							| 5 |  | simprl | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  ≤  𝐼  ∧  𝐼  <  ( 𝐴  +  1 ) ) )  →  𝐴  ≤  𝐼 ) | 
						
							| 6 |  | zre | ⊢ ( 𝐼  ∈  ℤ  →  𝐼  ∈  ℝ ) | 
						
							| 7 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 8 |  | letri3 | ⊢ ( ( 𝐼  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐼  =  𝐴  ↔  ( 𝐼  ≤  𝐴  ∧  𝐴  ≤  𝐼 ) ) ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝐼  =  𝐴  ↔  ( 𝐼  ≤  𝐴  ∧  𝐴  ≤  𝐼 ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  ≤  𝐼  ∧  𝐼  <  ( 𝐴  +  1 ) ) )  →  ( 𝐼  =  𝐴  ↔  ( 𝐼  ≤  𝐴  ∧  𝐴  ≤  𝐼 ) ) ) | 
						
							| 11 | 4 5 10 | mpbir2and | ⊢ ( ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  ≤  𝐼  ∧  𝐼  <  ( 𝐴  +  1 ) ) )  →  𝐼  =  𝐴 ) | 
						
							| 12 | 11 | ex | ⊢ ( ( 𝐼  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  ≤  𝐼  ∧  𝐼  <  ( 𝐴  +  1 ) )  →  𝐼  =  𝐴 ) ) |