| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
| 3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝑁 ∈ ℕ ) |
| 5 |
4
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝑁 ∈ ℕ0 ) |
| 6 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 7 |
3 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
| 8 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < 𝐴 ) |
| 9 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 10 |
4 9
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 11 |
|
ltle |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 1 < 𝐴 → 1 ≤ 𝐴 ) ) |
| 12 |
1 3 11
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 < 𝐴 → 1 ≤ 𝐴 ) ) |
| 13 |
8 12
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ≤ 𝐴 ) |
| 14 |
|
expge1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
| 15 |
3 10 13 14
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ) |
| 16 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ) |
| 17 |
3 10 16
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ) |
| 18 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 ∈ ℝ ) |
| 19 |
|
0lt1 |
⊢ 0 < 1 |
| 20 |
19
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 < 1 ) |
| 21 |
18 2 3 20 8
|
lttrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
| 22 |
|
lemul1 |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ↔ ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) ) |
| 23 |
2 17 3 21 22
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 ≤ ( 𝐴 ↑ ( 𝑁 − 1 ) ) ↔ ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) ) |
| 24 |
15 23
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 · 𝐴 ) ≤ ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 25 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 27 |
26
|
mullidd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 28 |
27
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 = ( 1 · 𝐴 ) ) |
| 29 |
|
expm1t |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 30 |
26 4 29
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 31 |
24 28 30
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 𝐴 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 32 |
2 3 7 8 31
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < ( 𝐴 ↑ 𝑁 ) ) |