| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
1
|
a1i |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 e. RR ) |
| 3 |
|
simp1 |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A e. RR ) |
| 4 |
|
simp2 |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> N e. NN ) |
| 5 |
4
|
nnnn0d |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> N e. NN0 ) |
| 6 |
|
reexpcl |
|- ( ( A e. RR /\ N e. NN0 ) -> ( A ^ N ) e. RR ) |
| 7 |
3 5 6
|
syl2anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ N ) e. RR ) |
| 8 |
|
simp3 |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < A ) |
| 9 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 10 |
4 9
|
syl |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( N - 1 ) e. NN0 ) |
| 11 |
|
ltle |
|- ( ( 1 e. RR /\ A e. RR ) -> ( 1 < A -> 1 <_ A ) ) |
| 12 |
1 3 11
|
sylancr |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 < A -> 1 <_ A ) ) |
| 13 |
8 12
|
mpd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 <_ A ) |
| 14 |
|
expge1 |
|- ( ( A e. RR /\ ( N - 1 ) e. NN0 /\ 1 <_ A ) -> 1 <_ ( A ^ ( N - 1 ) ) ) |
| 15 |
3 10 13 14
|
syl3anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 <_ ( A ^ ( N - 1 ) ) ) |
| 16 |
|
reexpcl |
|- ( ( A e. RR /\ ( N - 1 ) e. NN0 ) -> ( A ^ ( N - 1 ) ) e. RR ) |
| 17 |
3 10 16
|
syl2anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ ( N - 1 ) ) e. RR ) |
| 18 |
|
0red |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 e. RR ) |
| 19 |
|
0lt1 |
|- 0 < 1 |
| 20 |
19
|
a1i |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 < 1 ) |
| 21 |
18 2 3 20 8
|
lttrd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 < A ) |
| 22 |
|
lemul1 |
|- ( ( 1 e. RR /\ ( A ^ ( N - 1 ) ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ ( A ^ ( N - 1 ) ) <-> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) ) |
| 23 |
2 17 3 21 22
|
syl112anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 <_ ( A ^ ( N - 1 ) ) <-> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) ) |
| 24 |
15 23
|
mpbid |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) |
| 25 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A e. CC ) |
| 27 |
26
|
mullidd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 x. A ) = A ) |
| 28 |
27
|
eqcomd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A = ( 1 x. A ) ) |
| 29 |
|
expm1t |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
| 30 |
26 4 29
|
syl2anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
| 31 |
24 28 30
|
3brtr4d |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A <_ ( A ^ N ) ) |
| 32 |
2 3 7 8 31
|
ltletrd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < ( A ^ N ) ) |