Step |
Hyp |
Ref |
Expression |
1 |
|
2rp |
|
2 |
1
|
a1i |
|
3 |
|
2nn0 |
|
4 |
3
|
a1i |
|
5 |
|
nnnn0 |
|
6 |
4 5
|
nn0expcld |
|
7 |
|
nnge1 |
|
8 |
|
2re |
|
9 |
8
|
a1i |
|
10 |
|
1zzd |
|
11 |
|
nnz |
|
12 |
|
1lt2 |
|
13 |
12
|
a1i |
|
14 |
9 10 11 13
|
leexp2d |
|
15 |
|
2cn |
|
16 |
|
exp1 |
|
17 |
15 16
|
ax-mp |
|
18 |
17
|
a1i |
|
19 |
18
|
breq1d |
|
20 |
14 19
|
bitrd |
|
21 |
7 20
|
mpbid |
|
22 |
|
nn0ge2m1nn |
|
23 |
6 21 22
|
syl2anc |
|
24 |
23
|
nnrpd |
|
25 |
|
1ne2 |
|
26 |
25
|
necomi |
|
27 |
26
|
a1i |
|
28 |
|
relogbcl |
|
29 |
2 24 27 28
|
syl3anc |
|
30 |
29
|
flcld |
|
31 |
|
peano2zm |
|
32 |
11 31
|
syl |
|
33 |
|
2z |
|
34 |
|
uzid |
|
35 |
33 34
|
ax-mp |
|
36 |
|
nnlogbexp |
|
37 |
35 32 36
|
sylancr |
|
38 |
37
|
fveq2d |
|
39 |
|
flid |
|
40 |
32 39
|
syl |
|
41 |
38 40
|
eqtrd |
|
42 |
|
2nn |
|
43 |
42
|
a1i |
|
44 |
|
nnm1nn0 |
|
45 |
43 44
|
nnexpcld |
|
46 |
45
|
nnrpd |
|
47 |
|
relogbcl |
|
48 |
2 46 27 47
|
syl3anc |
|
49 |
|
pw2m1lepw2m1 |
|
50 |
35
|
a1i |
|
51 |
|
logbleb |
|
52 |
50 46 24 51
|
syl3anc |
|
53 |
49 52
|
mpbid |
|
54 |
|
flwordi |
|
55 |
48 29 53 54
|
syl3anc |
|
56 |
41 55
|
eqbrtrrd |
|
57 |
43 5
|
nnexpcld |
|
58 |
57
|
nnnn0d |
|
59 |
58 21 22
|
syl2anc |
|
60 |
59
|
nnrpd |
|
61 |
2 60 27 28
|
syl3anc |
|
62 |
61
|
flcld |
|
63 |
62
|
zred |
|
64 |
|
nnre |
|
65 |
|
peano2rem |
|
66 |
64 65
|
syl |
|
67 |
|
peano2re |
|
68 |
66 67
|
syl |
|
69 |
|
flle |
|
70 |
29 69
|
syl |
|
71 |
57
|
nnrpd |
|
72 |
|
relogbcl |
|
73 |
2 71 27 72
|
syl3anc |
|
74 |
57
|
nnred |
|
75 |
74
|
ltm1d |
|
76 |
|
logblt |
|
77 |
50 24 71 76
|
syl3anc |
|
78 |
75 77
|
mpbid |
|
79 |
64
|
leidd |
|
80 |
|
nnlogbexp |
|
81 |
35 11 80
|
sylancr |
|
82 |
|
nncn |
|
83 |
|
npcan1 |
|
84 |
82 83
|
syl |
|
85 |
79 81 84
|
3brtr4d |
|
86 |
29 73 68 78 85
|
ltletrd |
|
87 |
63 29 68 70 86
|
lelttrd |
|
88 |
|
zgeltp1eq |
|
89 |
88
|
imp |
|
90 |
30 32 56 87 89
|
syl22anc |
|