Metamath Proof Explorer


Theorem logbpw2m1

Description: The floor of the binary logarithm of 2 to the power of a positive integer minus 1 is equal to the integer minus 1. (Contributed by AV, 31-May-2020)

Ref Expression
Assertion logbpw2m1 Ilog22I1=I1

Proof

Step Hyp Ref Expression
1 2rp 2+
2 1 a1i I2+
3 2nn0 20
4 3 a1i I20
5 nnnn0 II0
6 4 5 nn0expcld I2I0
7 nnge1 I1I
8 2re 2
9 8 a1i I2
10 1zzd I1
11 nnz II
12 1lt2 1<2
13 12 a1i I1<2
14 9 10 11 13 leexp2d I1I212I
15 2cn 2
16 exp1 221=2
17 15 16 ax-mp 21=2
18 17 a1i I21=2
19 18 breq1d I212I22I
20 14 19 bitrd I1I22I
21 7 20 mpbid I22I
22 nn0ge2m1nn 2I022I2I1
23 6 21 22 syl2anc I2I1
24 23 nnrpd I2I1+
25 1ne2 12
26 25 necomi 21
27 26 a1i I21
28 relogbcl 2+2I1+21log22I1
29 2 24 27 28 syl3anc Ilog22I1
30 29 flcld Ilog22I1
31 peano2zm II1
32 11 31 syl II1
33 2z 2
34 uzid 222
35 33 34 ax-mp 22
36 nnlogbexp 22I1log22I1=I1
37 35 32 36 sylancr Ilog22I1=I1
38 37 fveq2d Ilog22I1=I1
39 flid I1I1=I1
40 32 39 syl II1=I1
41 38 40 eqtrd Ilog22I1=I1
42 2nn 2
43 42 a1i I2
44 nnm1nn0 II10
45 43 44 nnexpcld I2I1
46 45 nnrpd I2I1+
47 relogbcl 2+2I1+21log22I1
48 2 46 27 47 syl3anc Ilog22I1
49 pw2m1lepw2m1 I2I12I1
50 35 a1i I22
51 logbleb 222I1+2I1+2I12I1log22I1log22I1
52 50 46 24 51 syl3anc I2I12I1log22I1log22I1
53 49 52 mpbid Ilog22I1log22I1
54 flwordi log22I1log22I1log22I1log22I1log22I1log22I1
55 48 29 53 54 syl3anc Ilog22I1log22I1
56 41 55 eqbrtrrd II1log22I1
57 43 5 nnexpcld I2I
58 57 nnnn0d I2I0
59 58 21 22 syl2anc I2I1
60 59 nnrpd I2I1+
61 2 60 27 28 syl3anc Ilog22I1
62 61 flcld Ilog22I1
63 62 zred Ilog22I1
64 nnre II
65 peano2rem II1
66 64 65 syl II1
67 peano2re I1I-1+1
68 66 67 syl II-1+1
69 flle log22I1log22I1log22I1
70 29 69 syl Ilog22I1log22I1
71 57 nnrpd I2I+
72 relogbcl 2+2I+21log22I
73 2 71 27 72 syl3anc Ilog22I
74 57 nnred I2I
75 74 ltm1d I2I1<2I
76 logblt 222I1+2I+2I1<2Ilog22I1<log22I
77 50 24 71 76 syl3anc I2I1<2Ilog22I1<log22I
78 75 77 mpbid Ilog22I1<log22I
79 64 leidd III
80 nnlogbexp 22Ilog22I=I
81 35 11 80 sylancr Ilog22I=I
82 nncn II
83 npcan1 II-1+1=I
84 82 83 syl II-1+1=I
85 79 81 84 3brtr4d Ilog22II-1+1
86 29 73 68 78 85 ltletrd Ilog22I1<I-1+1
87 63 29 68 70 86 lelttrd Ilog22I1<I-1+1
88 zgeltp1eq log22I1I1I1log22I1log22I1<I-1+1log22I1=I1
89 88 imp log22I1I1I1log22I1log22I1<I-1+1log22I1=I1
90 30 32 56 87 89 syl22anc Ilog22I1=I1