Description: Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by Thierry Arnoux, 27-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | nnlogbexp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zgt1rpn0n1 | |
|
2 | 1 | adantr | |
3 | 2 | simp1d | |
4 | 3 | rpcnd | |
5 | 4 | adantr | |
6 | 2 | simp2d | |
7 | 6 | adantr | |
8 | 2 | simp3d | |
9 | 8 | adantr | |
10 | logb1 | |
|
11 | 5 7 9 10 | syl3anc | |
12 | simpr | |
|
13 | 12 | oveq2d | |
14 | 5 | exp0d | |
15 | 13 14 | eqtrd | |
16 | 15 | oveq2d | |
17 | 11 16 12 | 3eqtr4d | |
18 | 4 | adantr | |
19 | 6 | adantr | |
20 | 8 | adantr | |
21 | eldifpr | |
|
22 | 18 19 20 21 | syl3anbrc | |
23 | 3 | adantr | |
24 | simpr | |
|
25 | 24 | adantr | |
26 | 23 25 | rpexpcld | |
27 | 26 | rpcnne0d | |
28 | eldifsn | |
|
29 | 27 28 | sylibr | |
30 | logbval | |
|
31 | 22 29 30 | syl2anc | |
32 | 24 | zred | |
33 | 32 | adantr | |
34 | 23 33 | logcxpd | |
35 | 18 19 25 | cxpexpzd | |
36 | 35 | fveq2d | |
37 | 34 36 | eqtr3d | |
38 | 37 | oveq1d | |
39 | 33 | recnd | |
40 | 18 19 | logcld | |
41 | logne0 | |
|
42 | 23 20 41 | syl2anc | |
43 | 39 40 42 | divcan4d | |
44 | 31 38 43 | 3eqtr2d | |
45 | 17 44 | pm2.61dane | |