Metamath Proof Explorer


Theorem nnlogbexp

Description: Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion nnlogbexp B2MlogBBM=M

Proof

Step Hyp Ref Expression
1 zgt1rpn0n1 B2B+B0B1
2 1 adantr B2MB+B0B1
3 2 simp1d B2MB+
4 3 rpcnd B2MB
5 4 adantr B2MM=0B
6 2 simp2d B2MB0
7 6 adantr B2MM=0B0
8 2 simp3d B2MB1
9 8 adantr B2MM=0B1
10 logb1 BB0B1logB1=0
11 5 7 9 10 syl3anc B2MM=0logB1=0
12 simpr B2MM=0M=0
13 12 oveq2d B2MM=0BM=B0
14 5 exp0d B2MM=0B0=1
15 13 14 eqtrd B2MM=0BM=1
16 15 oveq2d B2MM=0logBBM=logB1
17 11 16 12 3eqtr4d B2MM=0logBBM=M
18 4 adantr B2MM0B
19 6 adantr B2MM0B0
20 8 adantr B2MM0B1
21 eldifpr B01BB0B1
22 18 19 20 21 syl3anbrc B2MM0B01
23 3 adantr B2MM0B+
24 simpr B2MM
25 24 adantr B2MM0M
26 23 25 rpexpcld B2MM0BM+
27 26 rpcnne0d B2MM0BMBM0
28 eldifsn BM0BMBM0
29 27 28 sylibr B2MM0BM0
30 logbval B01BM0logBBM=logBMlogB
31 22 29 30 syl2anc B2MM0logBBM=logBMlogB
32 24 zred B2MM
33 32 adantr B2MM0M
34 23 33 logcxpd B2MM0logBM=MlogB
35 18 19 25 cxpexpzd B2MM0BM=BM
36 35 fveq2d B2MM0logBM=logBM
37 34 36 eqtr3d B2MM0MlogB=logBM
38 37 oveq1d B2MM0MlogBlogB=logBMlogB
39 33 recnd B2MM0M
40 18 19 logcld B2MM0logB
41 logne0 B+B1logB0
42 23 20 41 syl2anc B2MM0logB0
43 39 40 42 divcan4d B2MM0MlogBlogB=M
44 31 38 43 3eqtr2d B2MM0logBBM=M
45 17 44 pm2.61dane B2MlogBBM=M