| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zgt1rpn0n1 |
|- ( B e. ( ZZ>= ` 2 ) -> ( B e. RR+ /\ B =/= 0 /\ B =/= 1 ) ) |
| 2 |
1
|
adantr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( B e. RR+ /\ B =/= 0 /\ B =/= 1 ) ) |
| 3 |
2
|
simp1d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> B e. RR+ ) |
| 4 |
3
|
rpcnd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> B e. CC ) |
| 5 |
4
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> B e. CC ) |
| 6 |
2
|
simp2d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> B =/= 0 ) |
| 7 |
6
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> B =/= 0 ) |
| 8 |
2
|
simp3d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> B =/= 1 ) |
| 9 |
8
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> B =/= 1 ) |
| 10 |
|
logb1 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb 1 ) = 0 ) |
| 11 |
5 7 9 10
|
syl3anc |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> ( B logb 1 ) = 0 ) |
| 12 |
|
simpr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> M = 0 ) |
| 13 |
12
|
oveq2d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> ( B ^ M ) = ( B ^ 0 ) ) |
| 14 |
5
|
exp0d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> ( B ^ 0 ) = 1 ) |
| 15 |
13 14
|
eqtrd |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> ( B ^ M ) = 1 ) |
| 16 |
15
|
oveq2d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> ( B logb ( B ^ M ) ) = ( B logb 1 ) ) |
| 17 |
11 16 12
|
3eqtr4d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M = 0 ) -> ( B logb ( B ^ M ) ) = M ) |
| 18 |
4
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> B e. CC ) |
| 19 |
6
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> B =/= 0 ) |
| 20 |
8
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> B =/= 1 ) |
| 21 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 22 |
18 19 20 21
|
syl3anbrc |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> B e. ( CC \ { 0 , 1 } ) ) |
| 23 |
3
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> B e. RR+ ) |
| 24 |
|
simpr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> M e. ZZ ) |
| 25 |
24
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> M e. ZZ ) |
| 26 |
23 25
|
rpexpcld |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( B ^ M ) e. RR+ ) |
| 27 |
26
|
rpcnne0d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( ( B ^ M ) e. CC /\ ( B ^ M ) =/= 0 ) ) |
| 28 |
|
eldifsn |
|- ( ( B ^ M ) e. ( CC \ { 0 } ) <-> ( ( B ^ M ) e. CC /\ ( B ^ M ) =/= 0 ) ) |
| 29 |
27 28
|
sylibr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( B ^ M ) e. ( CC \ { 0 } ) ) |
| 30 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( B ^ M ) e. ( CC \ { 0 } ) ) -> ( B logb ( B ^ M ) ) = ( ( log ` ( B ^ M ) ) / ( log ` B ) ) ) |
| 31 |
22 29 30
|
syl2anc |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( B logb ( B ^ M ) ) = ( ( log ` ( B ^ M ) ) / ( log ` B ) ) ) |
| 32 |
24
|
zred |
|- ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> M e. RR ) |
| 33 |
32
|
adantr |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> M e. RR ) |
| 34 |
23 33
|
logcxpd |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( log ` ( B ^c M ) ) = ( M x. ( log ` B ) ) ) |
| 35 |
18 19 25
|
cxpexpzd |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( B ^c M ) = ( B ^ M ) ) |
| 36 |
35
|
fveq2d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( log ` ( B ^c M ) ) = ( log ` ( B ^ M ) ) ) |
| 37 |
34 36
|
eqtr3d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( M x. ( log ` B ) ) = ( log ` ( B ^ M ) ) ) |
| 38 |
37
|
oveq1d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( ( M x. ( log ` B ) ) / ( log ` B ) ) = ( ( log ` ( B ^ M ) ) / ( log ` B ) ) ) |
| 39 |
33
|
recnd |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> M e. CC ) |
| 40 |
18 19
|
logcld |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( log ` B ) e. CC ) |
| 41 |
|
logne0 |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
| 42 |
23 20 41
|
syl2anc |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( log ` B ) =/= 0 ) |
| 43 |
39 40 42
|
divcan4d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( ( M x. ( log ` B ) ) / ( log ` B ) ) = M ) |
| 44 |
31 38 43
|
3eqtr2d |
|- ( ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) /\ M =/= 0 ) -> ( B logb ( B ^ M ) ) = M ) |
| 45 |
17 44
|
pm2.61dane |
|- ( ( B e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( B logb ( B ^ M ) ) = M ) |