| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> A e. RR+ ) |
| 2 |
1
|
rpreccld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( 1 / A ) e. RR+ ) |
| 3 |
|
relogbval |
|- ( ( B e. ( ZZ>= ` 2 ) /\ ( 1 / A ) e. RR+ ) -> ( B logb ( 1 / A ) ) = ( ( log ` ( 1 / A ) ) / ( log ` B ) ) ) |
| 4 |
2 3
|
syldan |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( B logb ( 1 / A ) ) = ( ( log ` ( 1 / A ) ) / ( log ` B ) ) ) |
| 5 |
|
relogbval |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) ) |
| 6 |
5
|
negeqd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> -u ( B logb A ) = -u ( ( log ` A ) / ( log ` B ) ) ) |
| 7 |
1
|
rpcnd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> A e. CC ) |
| 8 |
1
|
rpne0d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> A =/= 0 ) |
| 9 |
7 8
|
logcld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( log ` A ) e. CC ) |
| 10 |
|
zgt1rpn0n1 |
|- ( B e. ( ZZ>= ` 2 ) -> ( B e. RR+ /\ B =/= 0 /\ B =/= 1 ) ) |
| 11 |
10
|
simp1d |
|- ( B e. ( ZZ>= ` 2 ) -> B e. RR+ ) |
| 12 |
11
|
adantr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> B e. RR+ ) |
| 13 |
12
|
relogcld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( log ` B ) e. RR ) |
| 14 |
13
|
recnd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( log ` B ) e. CC ) |
| 15 |
10
|
simp3d |
|- ( B e. ( ZZ>= ` 2 ) -> B =/= 1 ) |
| 16 |
15
|
adantr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> B =/= 1 ) |
| 17 |
|
logne0 |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
| 18 |
12 16 17
|
syl2anc |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( log ` B ) =/= 0 ) |
| 19 |
9 14 18
|
divnegd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> -u ( ( log ` A ) / ( log ` B ) ) = ( -u ( log ` A ) / ( log ` B ) ) ) |
| 20 |
7 8
|
reccld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( 1 / A ) e. CC ) |
| 21 |
7 8
|
recne0d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( 1 / A ) =/= 0 ) |
| 22 |
20 21
|
logcld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( log ` ( 1 / A ) ) e. CC ) |
| 23 |
1
|
relogcld |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( log ` A ) e. RR ) |
| 24 |
23
|
reim0d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( Im ` ( log ` A ) ) = 0 ) |
| 25 |
|
0re |
|- 0 e. RR |
| 26 |
|
pipos |
|- 0 < _pi |
| 27 |
25 26
|
gtneii |
|- _pi =/= 0 |
| 28 |
27
|
a1i |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> _pi =/= 0 ) |
| 29 |
28
|
necomd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> 0 =/= _pi ) |
| 30 |
24 29
|
eqnetrd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( Im ` ( log ` A ) ) =/= _pi ) |
| 31 |
|
logrec |
|- ( ( A e. CC /\ A =/= 0 /\ ( Im ` ( log ` A ) ) =/= _pi ) -> ( log ` A ) = -u ( log ` ( 1 / A ) ) ) |
| 32 |
7 8 30 31
|
syl3anc |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( log ` A ) = -u ( log ` ( 1 / A ) ) ) |
| 33 |
32
|
eqcomd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> -u ( log ` ( 1 / A ) ) = ( log ` A ) ) |
| 34 |
22 33
|
negcon1ad |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> -u ( log ` A ) = ( log ` ( 1 / A ) ) ) |
| 35 |
34
|
oveq1d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( -u ( log ` A ) / ( log ` B ) ) = ( ( log ` ( 1 / A ) ) / ( log ` B ) ) ) |
| 36 |
6 19 35
|
3eqtrd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> -u ( B logb A ) = ( ( log ` ( 1 / A ) ) / ( log ` B ) ) ) |
| 37 |
4 36
|
eqtr4d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( B logb ( 1 / A ) ) = -u ( B logb A ) ) |