| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ+ ) |
| 2 |
1
|
rpreccld |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 3 |
|
relogbval |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 1 / 𝐴 ) ∈ ℝ+ ) → ( 𝐵 logb ( 1 / 𝐴 ) ) = ( ( log ‘ ( 1 / 𝐴 ) ) / ( log ‘ 𝐵 ) ) ) |
| 4 |
2 3
|
syldan |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝐵 logb ( 1 / 𝐴 ) ) = ( ( log ‘ ( 1 / 𝐴 ) ) / ( log ‘ 𝐵 ) ) ) |
| 5 |
|
relogbval |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝐵 logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) |
| 6 |
5
|
negeqd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → - ( 𝐵 logb 𝐴 ) = - ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) |
| 7 |
1
|
rpcnd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 8 |
1
|
rpne0d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ≠ 0 ) |
| 9 |
7 8
|
logcld |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
|
zgt1rpn0n1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
| 11 |
10
|
simp1d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℝ+ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
| 13 |
12
|
relogcld |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 14 |
13
|
recnd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 15 |
10
|
simp3d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ≠ 1 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → 𝐵 ≠ 1 ) |
| 17 |
|
logne0 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 18 |
12 16 17
|
syl2anc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 19 |
9 14 18
|
divnegd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → - ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) = ( - ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) |
| 20 |
7 8
|
reccld |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 21 |
7 8
|
recne0d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( 1 / 𝐴 ) ≠ 0 ) |
| 22 |
20 21
|
logcld |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ ( 1 / 𝐴 ) ) ∈ ℂ ) |
| 23 |
1
|
relogcld |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 24 |
23
|
reim0d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) = 0 ) |
| 25 |
|
0re |
⊢ 0 ∈ ℝ |
| 26 |
|
pipos |
⊢ 0 < π |
| 27 |
25 26
|
gtneii |
⊢ π ≠ 0 |
| 28 |
27
|
a1i |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → π ≠ 0 ) |
| 29 |
28
|
necomd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → 0 ≠ π ) |
| 30 |
24 29
|
eqnetrd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) |
| 31 |
|
logrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≠ π ) → ( log ‘ 𝐴 ) = - ( log ‘ ( 1 / 𝐴 ) ) ) |
| 32 |
7 8 30 31
|
syl3anc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ 𝐴 ) = - ( log ‘ ( 1 / 𝐴 ) ) ) |
| 33 |
32
|
eqcomd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → - ( log ‘ ( 1 / 𝐴 ) ) = ( log ‘ 𝐴 ) ) |
| 34 |
22 33
|
negcon1ad |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → - ( log ‘ 𝐴 ) = ( log ‘ ( 1 / 𝐴 ) ) ) |
| 35 |
34
|
oveq1d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( - ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) = ( ( log ‘ ( 1 / 𝐴 ) ) / ( log ‘ 𝐵 ) ) ) |
| 36 |
6 19 35
|
3eqtrd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → - ( 𝐵 logb 𝐴 ) = ( ( log ‘ ( 1 / 𝐴 ) ) / ( log ‘ 𝐵 ) ) ) |
| 37 |
4 36
|
eqtr4d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝐵 logb ( 1 / 𝐴 ) ) = - ( 𝐵 logb 𝐴 ) ) |