Metamath Proof Explorer


Theorem pipos

Description: _pi is positive. (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion pipos
|- 0 < _pi

Proof

Step Hyp Ref Expression
1 2pos
 |-  0 < 2
2 pigt2lt4
 |-  ( 2 < _pi /\ _pi < 4 )
3 2 simpli
 |-  2 < _pi
4 0re
 |-  0 e. RR
5 2re
 |-  2 e. RR
6 pire
 |-  _pi e. RR
7 4 5 6 lttri
 |-  ( ( 0 < 2 /\ 2 < _pi ) -> 0 < _pi )
8 1 3 7 mp2an
 |-  0 < _pi