Metamath Proof Explorer


Theorem pirp

Description: _pi is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion pirp
|- _pi e. RR+

Proof

Step Hyp Ref Expression
1 pire
 |-  _pi e. RR
2 pipos
 |-  0 < _pi
3 1 2 elrpii
 |-  _pi e. RR+