Metamath Proof Explorer


Theorem logbleb

Description: The general logarithm function is monotone/increasing. See logleb . (Contributed by Stefan O'Rear, 19-Oct-2014) (Revised by AV, 31-May-2020)

Ref Expression
Assertion logbleb B2X+Y+XYlogBXlogBY

Proof

Step Hyp Ref Expression
1 simp2 B2X+Y+X+
2 1 relogcld B2X+Y+logX
3 simp3 B2X+Y+Y+
4 3 relogcld B2X+Y+logY
5 eluzelre B2B
6 5 3ad2ant1 B2X+Y+B
7 1z 1
8 simp1 B2X+Y+B2
9 1p1e2 1+1=2
10 9 fveq2i 1+1=2
11 8 10 eleqtrrdi B2X+Y+B1+1
12 eluzp1l 1B1+11<B
13 7 11 12 sylancr B2X+Y+1<B
14 6 13 rplogcld B2X+Y+logB+
15 2 4 14 lediv1d B2X+Y+logXlogYlogXlogBlogYlogB
16 logleb X+Y+XYlogXlogY
17 16 3adant1 B2X+Y+XYlogXlogY
18 relogbval B2X+logBX=logXlogB
19 18 3adant3 B2X+Y+logBX=logXlogB
20 relogbval B2Y+logBY=logYlogB
21 20 3adant2 B2X+Y+logBY=logYlogB
22 19 21 breq12d B2X+Y+logBXlogBYlogXlogBlogYlogB
23 15 17 22 3bitr4d B2X+Y+XYlogBXlogBY