Metamath Proof Explorer


Theorem logleb

Description: Natural logarithm preserves <_ . (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion logleb A+B+ABlogAlogB

Proof

Step Hyp Ref Expression
1 logltb B+A+B<AlogB<logA
2 1 ancoms A+B+B<AlogB<logA
3 2 notbid A+B+¬B<A¬logB<logA
4 rpre A+A
5 rpre B+B
6 lenlt ABAB¬B<A
7 4 5 6 syl2an A+B+AB¬B<A
8 relogcl A+logA
9 relogcl B+logB
10 lenlt logAlogBlogAlogB¬logB<logA
11 8 9 10 syl2an A+B+logAlogB¬logB<logA
12 3 7 11 3bitr4d A+B+ABlogAlogB