| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							flval | 
							 |-  ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqeq1d | 
							 |-  ( A e. RR -> ( ( |_ ` A ) = B <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) = B <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rebtwnz | 
							 |-  ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							breq1 | 
							 |-  ( x = B -> ( x <_ A <-> B <_ A ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = B -> ( x + 1 ) = ( B + 1 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							breq2d | 
							 |-  ( x = B -> ( A < ( x + 1 ) <-> A < ( B + 1 ) ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							anbi12d | 
							 |-  ( x = B -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( B <_ A /\ A < ( B + 1 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							riota2 | 
							 |-  ( ( B e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							sylan2 | 
							 |-  ( ( B e. ZZ /\ A e. RR ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ancoms | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							bitr4d | 
							 |-  ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) = B <-> ( B <_ A /\ A < ( B + 1 ) ) ) )  |