Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
|- 1 e. NN |
2 |
|
blennn |
|- ( 1 e. NN -> ( #b ` 1 ) = ( ( |_ ` ( 2 logb 1 ) ) + 1 ) ) |
3 |
|
2cn |
|- 2 e. CC |
4 |
|
2ne0 |
|- 2 =/= 0 |
5 |
|
1ne2 |
|- 1 =/= 2 |
6 |
5
|
necomi |
|- 2 =/= 1 |
7 |
|
logb1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) |
8 |
3 4 6 7
|
mp3an |
|- ( 2 logb 1 ) = 0 |
9 |
8
|
fveq2i |
|- ( |_ ` ( 2 logb 1 ) ) = ( |_ ` 0 ) |
10 |
|
0z |
|- 0 e. ZZ |
11 |
|
flid |
|- ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) |
12 |
10 11
|
ax-mp |
|- ( |_ ` 0 ) = 0 |
13 |
9 12
|
eqtri |
|- ( |_ ` ( 2 logb 1 ) ) = 0 |
14 |
13
|
a1i |
|- ( 1 e. NN -> ( |_ ` ( 2 logb 1 ) ) = 0 ) |
15 |
14
|
oveq1d |
|- ( 1 e. NN -> ( ( |_ ` ( 2 logb 1 ) ) + 1 ) = ( 0 + 1 ) ) |
16 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
17 |
15 16
|
eqtrdi |
|- ( 1 e. NN -> ( ( |_ ` ( 2 logb 1 ) ) + 1 ) = 1 ) |
18 |
2 17
|
eqtrd |
|- ( 1 e. NN -> ( #b ` 1 ) = 1 ) |
19 |
1 18
|
ax-mp |
|- ( #b ` 1 ) = 1 |