| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
|- 1 e. NN |
| 2 |
|
blennn |
|- ( 1 e. NN -> ( #b ` 1 ) = ( ( |_ ` ( 2 logb 1 ) ) + 1 ) ) |
| 3 |
|
2cn |
|- 2 e. CC |
| 4 |
|
2ne0 |
|- 2 =/= 0 |
| 5 |
|
1ne2 |
|- 1 =/= 2 |
| 6 |
5
|
necomi |
|- 2 =/= 1 |
| 7 |
|
logb1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) |
| 8 |
3 4 6 7
|
mp3an |
|- ( 2 logb 1 ) = 0 |
| 9 |
8
|
fveq2i |
|- ( |_ ` ( 2 logb 1 ) ) = ( |_ ` 0 ) |
| 10 |
|
0z |
|- 0 e. ZZ |
| 11 |
|
flid |
|- ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) |
| 12 |
10 11
|
ax-mp |
|- ( |_ ` 0 ) = 0 |
| 13 |
9 12
|
eqtri |
|- ( |_ ` ( 2 logb 1 ) ) = 0 |
| 14 |
13
|
a1i |
|- ( 1 e. NN -> ( |_ ` ( 2 logb 1 ) ) = 0 ) |
| 15 |
14
|
oveq1d |
|- ( 1 e. NN -> ( ( |_ ` ( 2 logb 1 ) ) + 1 ) = ( 0 + 1 ) ) |
| 16 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 17 |
15 16
|
eqtrdi |
|- ( 1 e. NN -> ( ( |_ ` ( 2 logb 1 ) ) + 1 ) = 1 ) |
| 18 |
2 17
|
eqtrd |
|- ( 1 e. NN -> ( #b ` 1 ) = 1 ) |
| 19 |
1 18
|
ax-mp |
|- ( #b ` 1 ) = 1 |