Metamath Proof Explorer


Theorem blen1

Description: The binary length of 1. (Contributed by AV, 21-May-2020)

Ref Expression
Assertion blen1 # b 1 = 1

Proof

Step Hyp Ref Expression
1 1nn 1
2 blennn 1 # b 1 = log 2 1 + 1
3 2cn 2
4 2ne0 2 0
5 1ne2 1 2
6 5 necomi 2 1
7 logb1 2 2 0 2 1 log 2 1 = 0
8 3 4 6 7 mp3an log 2 1 = 0
9 8 fveq2i log 2 1 = 0
10 0z 0
11 flid 0 0 = 0
12 10 11 ax-mp 0 = 0
13 9 12 eqtri log 2 1 = 0
14 13 a1i 1 log 2 1 = 0
15 14 oveq1d 1 log 2 1 + 1 = 0 + 1
16 0p1e1 0 + 1 = 1
17 15 16 eqtrdi 1 log 2 1 + 1 = 1
18 2 17 eqtrd 1 # b 1 = 1
19 1 18 ax-mp # b 1 = 1