Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
Binary length
blen1
Next ⟩
blen2
Metamath Proof Explorer
Ascii
Unicode
Theorem
blen1
Description:
The binary length of 1.
(Contributed by
AV
, 21-May-2020)
Ref
Expression
Assertion
blen1
⊢
#
b
⁡
1
=
1
Proof
Step
Hyp
Ref
Expression
1
1nn
⊢
1
∈
ℕ
2
blennn
⊢
1
∈
ℕ
→
#
b
⁡
1
=
log
2
1
+
1
3
2cn
⊢
2
∈
ℂ
4
2ne0
⊢
2
≠
0
5
1ne2
⊢
1
≠
2
6
5
necomi
⊢
2
≠
1
7
logb1
⊢
2
∈
ℂ
∧
2
≠
0
∧
2
≠
1
→
log
2
1
=
0
8
3
4
6
7
mp3an
⊢
log
2
1
=
0
9
8
fveq2i
⊢
log
2
1
=
0
10
0z
⊢
0
∈
ℤ
11
flid
⊢
0
∈
ℤ
→
0
=
0
12
10
11
ax-mp
⊢
0
=
0
13
9
12
eqtri
⊢
log
2
1
=
0
14
13
a1i
⊢
1
∈
ℕ
→
log
2
1
=
0
15
14
oveq1d
⊢
1
∈
ℕ
→
log
2
1
+
1
=
0
+
1
16
0p1e1
⊢
0
+
1
=
1
17
15
16
eqtrdi
⊢
1
∈
ℕ
→
log
2
1
+
1
=
1
18
2
17
eqtrd
⊢
1
∈
ℕ
→
#
b
⁡
1
=
1
19
1
18
ax-mp
⊢
#
b
⁡
1
=
1