Metamath Proof Explorer


Theorem blen2

Description: The binary length of 2. (Contributed by AV, 21-May-2020)

Ref Expression
Assertion blen2 # b 2 = 2

Proof

Step Hyp Ref Expression
1 2nn 2
2 blennn 2 # b 2 = log 2 2 + 1
3 2cn 2
4 2ne0 2 0
5 1ne2 1 2
6 5 necomi 2 1
7 logbid1 2 2 0 2 1 log 2 2 = 1
8 3 4 6 7 mp3an log 2 2 = 1
9 8 fveq2i log 2 2 = 1
10 1z 1
11 flid 1 1 = 1
12 10 11 ax-mp 1 = 1
13 9 12 eqtri log 2 2 = 1
14 13 a1i 2 log 2 2 = 1
15 14 oveq1d 2 log 2 2 + 1 = 1 + 1
16 1p1e2 1 + 1 = 2
17 16 a1i 2 1 + 1 = 2
18 2 15 17 3eqtrd 2 # b 2 = 2
19 1 18 ax-mp # b 2 = 2