Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
Binary length
blen2
Next ⟩
nnpw2p
Metamath Proof Explorer
Ascii
Unicode
Theorem
blen2
Description:
The binary length of 2.
(Contributed by
AV
, 21-May-2020)
Ref
Expression
Assertion
blen2
⊢
#
b
⁡
2
=
2
Proof
Step
Hyp
Ref
Expression
1
2nn
⊢
2
∈
ℕ
2
blennn
⊢
2
∈
ℕ
→
#
b
⁡
2
=
log
2
2
+
1
3
2cn
⊢
2
∈
ℂ
4
2ne0
⊢
2
≠
0
5
1ne2
⊢
1
≠
2
6
5
necomi
⊢
2
≠
1
7
logbid1
⊢
2
∈
ℂ
∧
2
≠
0
∧
2
≠
1
→
log
2
2
=
1
8
3
4
6
7
mp3an
⊢
log
2
2
=
1
9
8
fveq2i
⊢
log
2
2
=
1
10
1z
⊢
1
∈
ℤ
11
flid
⊢
1
∈
ℤ
→
1
=
1
12
10
11
ax-mp
⊢
1
=
1
13
9
12
eqtri
⊢
log
2
2
=
1
14
13
a1i
⊢
2
∈
ℕ
→
log
2
2
=
1
15
14
oveq1d
⊢
2
∈
ℕ
→
log
2
2
+
1
=
1
+
1
16
1p1e2
⊢
1
+
1
=
2
17
16
a1i
⊢
2
∈
ℕ
→
1
+
1
=
2
18
2
15
17
3eqtrd
⊢
2
∈
ℕ
→
#
b
⁡
2
=
2
19
1
18
ax-mp
⊢
#
b
⁡
2
=
2