| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 |  | blennn | ⊢ ( 2  ∈  ℕ  →  ( #b ‘ 2 )  =  ( ( ⌊ ‘ ( 2  logb  2 ) )  +  1 ) ) | 
						
							| 3 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 4 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 5 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 6 | 5 | necomi | ⊢ 2  ≠  1 | 
						
							| 7 |  | logbid1 | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  2  ≠  1 )  →  ( 2  logb  2 )  =  1 ) | 
						
							| 8 | 3 4 6 7 | mp3an | ⊢ ( 2  logb  2 )  =  1 | 
						
							| 9 | 8 | fveq2i | ⊢ ( ⌊ ‘ ( 2  logb  2 ) )  =  ( ⌊ ‘ 1 ) | 
						
							| 10 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 11 |  | flid | ⊢ ( 1  ∈  ℤ  →  ( ⌊ ‘ 1 )  =  1 ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( ⌊ ‘ 1 )  =  1 | 
						
							| 13 | 9 12 | eqtri | ⊢ ( ⌊ ‘ ( 2  logb  2 ) )  =  1 | 
						
							| 14 | 13 | a1i | ⊢ ( 2  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  2 ) )  =  1 ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 2  ∈  ℕ  →  ( ( ⌊ ‘ ( 2  logb  2 ) )  +  1 )  =  ( 1  +  1 ) ) | 
						
							| 16 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 17 | 16 | a1i | ⊢ ( 2  ∈  ℕ  →  ( 1  +  1 )  =  2 ) | 
						
							| 18 | 2 15 17 | 3eqtrd | ⊢ ( 2  ∈  ℕ  →  ( #b ‘ 2 )  =  2 ) | 
						
							| 19 | 1 18 | ax-mp | ⊢ ( #b ‘ 2 )  =  2 |