Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
⊢ 2 ∈ ℕ |
2 |
|
blennn |
⊢ ( 2 ∈ ℕ → ( #b ‘ 2 ) = ( ( ⌊ ‘ ( 2 logb 2 ) ) + 1 ) ) |
3 |
|
2cn |
⊢ 2 ∈ ℂ |
4 |
|
2ne0 |
⊢ 2 ≠ 0 |
5 |
|
1ne2 |
⊢ 1 ≠ 2 |
6 |
5
|
necomi |
⊢ 2 ≠ 1 |
7 |
|
logbid1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 2 ) = 1 ) |
8 |
3 4 6 7
|
mp3an |
⊢ ( 2 logb 2 ) = 1 |
9 |
8
|
fveq2i |
⊢ ( ⌊ ‘ ( 2 logb 2 ) ) = ( ⌊ ‘ 1 ) |
10 |
|
1z |
⊢ 1 ∈ ℤ |
11 |
|
flid |
⊢ ( 1 ∈ ℤ → ( ⌊ ‘ 1 ) = 1 ) |
12 |
10 11
|
ax-mp |
⊢ ( ⌊ ‘ 1 ) = 1 |
13 |
9 12
|
eqtri |
⊢ ( ⌊ ‘ ( 2 logb 2 ) ) = 1 |
14 |
13
|
a1i |
⊢ ( 2 ∈ ℕ → ( ⌊ ‘ ( 2 logb 2 ) ) = 1 ) |
15 |
14
|
oveq1d |
⊢ ( 2 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 2 ) ) + 1 ) = ( 1 + 1 ) ) |
16 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
17 |
16
|
a1i |
⊢ ( 2 ∈ ℕ → ( 1 + 1 ) = 2 ) |
18 |
2 15 17
|
3eqtrd |
⊢ ( 2 ∈ ℕ → ( #b ‘ 2 ) = 2 ) |
19 |
1 18
|
ax-mp |
⊢ ( #b ‘ 2 ) = 2 |